Jefferies JL, Morales DL. Mechanical circulatory support in children: bridge to transplant versus recovery. Curr Heart Fail Rep. 2012;9(3):236–43.
Amdani S, Bradley SM, Rossano J, et al. Burden of pediatric heart failure in the United States. J Am Coll Cardiol. 2022;79(19):1917–28.
Miller JR, Eghtesady P. Ventricular assist device use in congenital heart disease with a comparison to heart transplant. J Comp Eff Res. 2014;3(5):533–46.
Thompson JH, Faulkner K, Lee C. Adverse events in patients with a left ventricular assist device: are patient-reported outcomes affected? Eur J Cardiovasc Nurs. 2022;21(3):254–60.
Şen S, Ülger Z, Bal ZŞ, Özbaran M. Infections in children with left ventricular assist device. Transplant Infect Dis. 2020;22(6):e13439.
Auerbach SR, Richmond ME, Schumacher KR, et al. Infectious complications of ventricular assist device use in children in the United States: data from the Pediatric Interagency Registry for Mechanical Circulatory Support (Pedimacs). J Heart Lung Transplant. 2018;37(1):46–53.
Cabrera AG, Khan MS, Morales DLS, et al. Infectious complications and outcomes in children supported with left ventricular assist devices. J Heart Lung Transplant. 2013;32(5):518–24.
Toba FA, Akashi H, Arrecubieta C, Lowy FD. Role of biofilm in Staphylococcus aureus and Staphylococcus epidermidis ventricular assist device driveline infections. J Thorac Cardiovasc Surg. 2011;141(5):1259–64.
Burki S, Adachi I. Pediatric ventricular assist devices: current challenges and future prospects. Vasc Health Risk Manag. 2017;13:177–85.
Article PubMed PubMed Central Google Scholar
Ragusa R, Prontera C, Di Molfetta A, et al. Time-course of circulating cardiac and inflammatory biomarkers after Ventricular Assist Device implantation: comparison between pediatric and adult patients. Clin Chim Acta. 2018;486:88–93.
Article CAS PubMed Google Scholar
Byrnes JW, Bhutta AT, Rettiganti MR, et al. Steroid therapy attenuates acute phase reactant response among children on ventricular assist device support. Ann Thorac Surg. 2015;99(4):1392–8.
Radley G, Pieper IL, Ali S, et al. The inflammatory response to ventricular assist devices. Front Immunol. 2018;9:2651.
Article PubMed PubMed Central Google Scholar
Tang PC, Haft JW, Romano MA, et al. Right ventricular failure following left ventricular assist device implantation is associated with a preoperative pro-inflammatory response. J Cardiothorac Surg. 2019;14(1):80.
Article PubMed PubMed Central Google Scholar
Patra JK, Das G, Fraceto LF, et al. Nano-based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018;16(1):71.
Article PubMed PubMed Central Google Scholar
Ferreira M, Ogren M, Dias JNR, et al. Liposomes as antibiotic delivery systems: a promising nanotechnological strategy against antimicrobial resistance. Molecules. 2021;26(7).
Brusini R, Varna M, Couvreur P. Advanced nanomedicines for the treatment of inflammatory diseases. Adv Drug Deliv Rev. 2020;157:161–78.
Article CAS PubMed PubMed Central Google Scholar
Nakhaei P, Margiana R, Bokov DO, et al. Liposomes: structure, biomedical applications, and stability parameters with emphasis on cholesterol. Front Bioeng Biotechnol. 2021;9:705886.
Article PubMed PubMed Central Google Scholar
Ferreira M, Pinto SN, Aires-da-Silva F, et al. Liposomes as a nanoplatform to improve the delivery of antibiotics into Staphylococcus aureus biofilms. Pharmaceutics. 2021;13(3).
Rukavina Z, Vanić Ž. Current trends in development of liposomes for targeting bacterial biofilms. Pharmaceutics. 2016;8(2).
Wang DY, Van der Mei HC, Ren Y, Busscher L, Shi L. Lipid-based antimicrobial delivery-systems for the treatment of bacterial infections. Front Chem. 2020;7:872.
Article PubMed PubMed Central Google Scholar
Placha D, Jampilek J. Chronic inflammatory diseases, anti-inflammatory agents and their delivery nanosystems. Pharmaceutics. 2021;13(1):64.
Article CAS PubMed PubMed Central Google Scholar
Ahamad N, Kar A, Mehta S, et al. Immunomodulatory nanosystems for treating inflammatory diseases. Biomaterials. 2021;274:120875.
Article CAS PubMed Google Scholar
Choubey S, Goyal S, Varughese LR, et al. Probing gallic acid for its broad spectrum applications. Mini Rev Med Chem. 2018;18(15):1283–93.
Article CAS PubMed Google Scholar
Locatelli C, Filippin-Monteiro FB, Centa A, Creczinsky-Pasa TB. Antioxidant, antitumoral and anti-inflammatory activities of gallic acid. In: Li G, editor. Handbook on gallic acid: natural occurrences, antioxidant properties and health implications. Nova Publishers; 2013. p. 1–23.
Kaczmarek B. Tannic acid with antiviral and antibacterial activity as a promising component of biomaterials—a minireview. Materials. 2020;13(14):3224.
Article CAS PubMed PubMed Central Google Scholar
Ninan N, Forget A, Shastri VP, Voelcker NH, Blencowe A. Antibacterial and anti-inflammatory pH-responsive tannic acid-carboxylated agarose composite hydrogels for wound healing. ACS Appl Mater Interfaces. 2016;8(42):28511–21.
Article CAS PubMed Google Scholar
Daglia M. Polyphenols as antimicrobial agents. Curr Opin Biotechnol. 2012;23(2):174–81.
Article CAS PubMed Google Scholar
Leuck AM. Left ventricular assist device driveline infections: recent advances and future goals. J Thorac Dis. 2015;7(12):2151–7.
PubMed PubMed Central Google Scholar
Serbanescu MA, Apple CG, Fernandez-Moure JS. Role of resident microbial communities in biofilm-related implant infections: recent insights and implications. Surg Infect (Larchmt). 2023;24(3):258–64.
Jo EK. Interplay between host and pathogen: immune defense and beyond. Exp Mol Med. 2019;51(12):1–3.
Comments (0)