Photocatalytic performance of mixed lithium niobates-tantalates prepared by mechanochemical method

Akshay VR, Arun B, Mandal G, Vasundhara M (2019) Impact of Mn-dopant concentration in observing narrowing of band-gap, urbach tail and paramagnetism in anatase TiO2 nanocrystals. New J Chem 43:14786–14799. https://doi.org/10.1039/C9NJ02884F

Article  CAS  Google Scholar 

Baláž P, Achimovičová M, Baláž M, Billik P, Cherkezova-Zheleva Z, Criado JM, Delogu F, Dutkova E, Gaffet E, Gotor FJ, Kumar R, Mitov I, Rojac T, Senna M, Streletskiikl A, Wieczorek-Ciurowa K (2013) Hallmarks of mechanochemistry: from nanoparticles to technology. Chem Soc Rev 42:7571–7637. https://doi.org/10.1039/C3CS35468G

Article  Google Scholar 

Bartasyte A, Glazer AM, Wondre F, Prabhakaran D, Thomas PA, Huband S, Keebleand DS, Margueron S (2012) Growth of LiNb1−xTaxO3 solid solution crystals. Mater Chem Phys 134:728–735. https://doi.org/10.1016/j.matchemphys.2012.03.060

Article  CAS  Google Scholar 

Bhagavannarayana G, Ananthamurthy RV, Budakoti GC, Kumar B, Bartwal KS (2005) A study of the effect of annealing on Fe-doped LiNbO3 by HRXRD, XRT and FT-IR. J Appl Cryst 38:768–771. https://doi.org/10.1107/S0021889805023745

Article  CAS  Google Scholar 

Edalati K, Fujiwara K, Takechi S, Wang Q, Arita M, Watanabe M, Sauvage X, Ishihara T, Horita Z (2020) Improved photocatalytic hydrogen evolution on tantalate perovskites CsTaO3 and LiTaO3 by strain-induced vacancies. ACS Appl Energy Mater 3:1710–1718. https://doi.org/10.1021/acsaem.9b02197

Article  CAS  Google Scholar 

Indris S, Bork D, Heitjans P (2000) Nanocrystalline oxide ceramics prepared by high-energy ball milling. J Mater Synth Process 8:245–250. https://doi.org/10.1023/A:1011324429011

Article  CAS  Google Scholar 

Khalameida S, Sydorchuk V, Skubiszewska-Zięba J, Leboda R, Zazhigalov V (2010) Synthesis, thermoanalytical, and spectroscopical studies of dispersed barium titanate. J Therm Anal Calorim 101:779–784. https://doi.org/10.1007/s10973-010-0755-3

Article  CAS  Google Scholar 

Khalameida S, Sydorchuk V, Leboda R, Skubiszewska-Zięba J, Zazhigalov V (2013) Preparation of nano-dispersed lithium niobate by mechanochemical route. J Therm Anal Calorim 115:579–586. https://doi.org/10.1007/s10973-013-3343-5

Article  CAS  Google Scholar 

Khalameida S, Samsonenko M, Sydorchuk V, Zakutevskyy O, Starchevskyy V, Lakhnik A (2022) Improving the photocatalytic properties of tin dioxide doped with titanium and copper in the degradation of rhodamine B and safranin T. Reac Kinet Mech Cat 135:1665–1685. https://doi.org/10.1007/s11144-022-02206-w

Article  CAS  Google Scholar 

Kocsor L, Péter L, Corradi G, Kis Z, Gubicza J, Kovács L (2019) Mechanochemical reactions of lithium niobate induced by high-energy ball-milling. Crystals 9:334. https://doi.org/10.3390/cryst9070334

Article  CAS  Google Scholar 

Kucio K, Sydorchuk V, Khalameida S, Charmas B (2020a) The effect of mechanochemical, microwave and hydrothermal modification of precipitated TiO2 on its physical-chemical and photocatalytic properties. J Alloys Compd 862:158011. https://doi.org/10.1016/j.jallcom.2020.158011

Article  CAS  Google Scholar 

Kucio K, Charmas B, Sydorchuk V, Khalameida S, Khyzhun O (2020b) Synthesis and modification of Ce-Zr oxide compositions as photocatalysts. Appl Catal A Gen 603:117767. https://doi.org/10.1016/j.apcata.2020.117767

Article  CAS  Google Scholar 

Kumari S, Rao P, Reddy M (2008) Environment-friendly red pigments from CeO2–Fe2O3–Pr6O11 solid solutions. J Alloy Compd 461:509–515. https://doi.org/10.1016/j.jallcom.2007.07.055

Article  CAS  Google Scholar 

Merka O, Yarovyi V, Bahnemann DW, Wark M (2011) pH-control of the photocatalytic degradation mechanism of Rhodamine B over Pb3Nb4O13. J Phys Chem C 115:8014–8023. https://doi.org/10.1021/jp108637r

Article  CAS  Google Scholar 

Rauf MA, Ashraf SS (2009) Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem Eng J 151:10–18. https://doi.org/10.1016/j.cej.2009.02.026

Article  CAS  Google Scholar 

Rojac T, Bencan A, Ursic H (2008a) Synthesis of a Li- and Ta-modified (K, Na)NbO3 solid solution by mechanochemical activation. J Am Ceram Soc 91:3789–3791. https://doi.org/10.1111/j.1551-2916.2008.02714.x

Article  CAS  Google Scholar 

Rojac T, Kosec M, Malic B, Holc J (2008b) The mechanochemical synthesis of NaNbO3 using different ball-impact energies. J Am Ceram Soc 91:1559–1565. https://doi.org/10.1111/j.1551-2916.2008.02315.x

Article  CAS  Google Scholar 

Roshchupkin D, Emelin E, Plotitcyna O, Rashid F, Karandashev V, Orlova T, Targonskaya N, Sakharov S, Mololkin A, Redkin B, Fritze H, Suhak D, Kovalev D, Vadilonga S, Ortega L, Leitenberger W (2020) Single crystals of ferroelectric lithium niobate–tantalate LiNb1–x TaxO3 solid solutions for high-temperature sensor and actuator applications. Acta Crystallogr 76:1071–1076. https://doi.org/10.1107/S2052520620014390

Article  CAS  Google Scholar 

Silvestri S, Stefanello N, Silveira Salla J, Foletto EL (2019) Photocatalytic properties of Zn2SnO4 powders prepared by different modified hydrothermal routes. Res Chem Intermed 45:4299–4313. https://doi.org/10.1007/s11164-019-03832-1

Article  CAS  Google Scholar 

Stojanovic BD (2003) Mechanochemical synthesis of ceramic powders with perovskite structure. J Mater Process Technol 143–144:78–81. https://doi.org/10.1016/S0924-0136(03)00323-6

Article  CAS  Google Scholar 

Sydorchuk V, Lutsyuk I, Shved V, Hreb V, Kondyr A, Zakutevskyy O, Vasylechko L (2020) PrCo1−xFexO3 perovskite powders for possible photocatalytic applications. Res Chem Intermed 46:1909–1930. https://doi.org/10.1007/s11164-019-04071-0

Article  CAS  Google Scholar 

Szczęśniak B, Choma J, Jaroniec M (2021) Recent advances in mechanochemical synthesis of mesoporous metal oxides. Mater Adv. https://doi.org/10.1039/d1ma00073j

Article  Google Scholar 

Timoshevskii AN, Ktalkherman MG, Emel’kin VA, Pozdnyakov BA, Zamyatin AP (2008) High-temperature decomposition of lithium carbonate at atmospheric pressure. High Temp 46:414–421. https://doi.org/10.1134/S0018151X0803019X

Article  CAS  Google Scholar 

Vasylechko L, Sydorchuk V, Lakhnik A, Suhak Yu, Wlodarczyk D, Hurskyy S, Yakhnevych U, Ya Z, Sugak D, Syvorotka I, Solskii I, Buryy O, Suchocki A, Fritze H (2021a) Investigations of LiNb1−x TaxO3 nanopowders obtained with mechanochemical method. Crystals 11:755. https://doi.org/10.3390/cryst11070755

Article  CAS  Google Scholar 

Vasylechko L, Sydorchuk V, Hurskyj S, Buryy O, Sugak D, Zhydachevskyy Ya, Sudorchuk V, Lakhnik A, Syvorotka I, Suchocki A, Suhak Y, Fritze H (2021b) Obtaining and investigation of the LiNbO3, LiNbO3:Mg, LiTaO3 nanopowders doped with Pr ions. SMSI 2021b Conference Sensor and Measurement Science International. pp. 45–46. https://doi.org/10.5162/SMSI2021/A1.3

Yaghoubi H, Li Z, Chen Y, Ngo HT, Bhethanabotla VR, Joseph B, Ma S, Schlaf R, Takshi A (2014) Toward a visible light-driven photocatalyst: the effect of midgap-states-induced energy gap of undoped TiO2 nanoparticles. ACS Catal 5:327–335. https://doi.org/10.1021/cs501539q

Article  CAS  Google Scholar 

Zanatta AR (2022) The optical band gap of lithium niobate (LiNbO3) and its dependence with temperature. Results Phys. 39:105736. https://doi.org/10.1016/j.rinp.2022.105736

Article  Google Scholar 

Zielinska B, Borowiak-Palen E, Kalenzuk RJ (2008) Preparation and characterization of lithium niobate as a novel photocatalyst in hydrogen generation. J Phys Chem Solids 69:236–242. https://doi.org/10.1016/j.jpcs.2007.09.001

Article  CAS  Google Scholar 

Zielińska B, Mijowska E, Kalenczuk RJ (2012) Synthesis, characterization and photocatalytic properties of lithium tantalate. Mater Charact 68:71–76. https://doi.org/10.1016/j.matchar.2012.03.008

Article  CAS  Google Scholar 

Zlotnik S, Tobaldi DM, Seabra P, Labrincha JA, Vilarinho PM (2016) Alkali niobate and tantalate perovskites as alternative photocatalysts. ChemPhysChem 17:3570–3575. https://doi.org/10.1002/cphc.201600476

Article  CAS  Google Scholar 

Comments (0)

No login
gif