Abdul AAB, Abdullah AM. Current advances in regulation of bone homeostasis. FASEB BioAdv. 2020;2(11):668–79.
Yang T-L, Shen H, Liu A, Dong S-S, Zhang L, Deng F-Y, et al. A road map for understanding molecular and genetic determinants of osteoporosis. Nat Rev Endocrinol. 2020;16(2):91–103.
Leder BZ. Optimizing sequential and combined anabolic and antiresorptive osteoporosis therapy. JBMR plus. 2018;2(2):62–8.
Article PubMed PubMed Central Google Scholar
Cosman F, Nieves JW, Dempster DW. Treatment sequence matters: anabolic and antiresorptive therapy for osteoporosis. J Bone Miner Res. 2017;32(2):198–202.
Article CAS PubMed Google Scholar
Khan M, Cheung AM, Khan AA. Drug-related adverse events of osteoporosis therapy. Endocrinol Metab Clin North Am. 2017;46(1):181–92.
Bain S, Jerome C, Shen V, Dupin-Roger I, Ammann P. Strontium ranelate improves bone strength in ovariectomized rat by positively influencing bone resistance determinants. Osteoporos Int. 2009;20(8):1417–28.
Article CAS PubMed Google Scholar
Meunier PJ, Roux C, Seeman E, Ortolani S, Badurski JE, Spector TD, et al. The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med. 2004;350(5):459–68.
Article CAS PubMed Google Scholar
Bonnelye E, Chabadel A, Saltel F, Jurdic P. Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro. Bone. 2008;42(1):129–38.
Article CAS PubMed Google Scholar
Hoffmann D, Sehmisch S, Hofmann A, Eimer C, Komrakova M, Saul D, et al. Comparison of parathyroid hormone and strontium ranelate in combination with whole-body vibration in a rat model of osteoporosis. J Bone Miner Metab. 2017;35(1):31–9.
Article CAS PubMed Google Scholar
Curtis EM, Cooper C, Harvey NC. Cardiovascular safety of calcium, magnesium and strontium: what does the evidence say? Aging Clin Exp Res. 2021;33(3):479–94.
Article PubMed PubMed Central Google Scholar
Valdes AM, Walter J, Segal E, Spector TD. Role of the gut microbiota in nutrition and health. BMJ. 2018;361:k2179.
Article PubMed PubMed Central Google Scholar
Oliphant K, Allen-Vercoe E. Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health. Microbiome. 2019;7(1):1–15.
Nguyen QP, Karagas MR, Madan JC, Dade E, Palys TJ, Morrison HG, et al. Associations between the gut microbiome and metabolome in early life. BMC Microbiol. 2021;21(1):238.
Article CAS PubMed PubMed Central Google Scholar
de Sire A, de Sire R, Curci C, Castiglione F, Wahli W. Role of dietary supplements and probiotics in modulating microbiota and bone health: the gut-bone axis. Cells. 2022;11(4):743.
Article PubMed PubMed Central Google Scholar
Chevalier C, Kieser S, Çolakoğlu M, Hadadi N, Brun J, Rigo D, et al. Warmth prevents bone loss through the gut microbiota. Cell Metab. 2020;32(4):575-590. e577.
Article CAS PubMed PubMed Central Google Scholar
Sjögren K, Engdahl C, Henning P, Lerner UH, Tremaroli V, Lagerquist MK, et al. The gut microbiota regulates bone mass in mice. J Bone Miner Res. 2012;27(6):1357–67.
Ohlsson C, Sjögren K. Effects of the gut microbiota on bone mass. Trends Endocrinol Metab. 2015;26(2):69–74.
Article CAS PubMed Google Scholar
Collins FL, Rios-Arce ND, Schepper JD, Jones AD, Schaefer L, Britton RA, et al. Beneficial effects of Lactobacillus reuteri 6475 on bone density in male mice is dependent on lymphocytes. Sci Rep. 2019;9(1):1–17.
Huidrom S, Beg MA, Masood T. Post-menopausal osteoporosis and probiotics. Curr Drug Targets. 2021;22(7):816–22.
Article CAS PubMed Google Scholar
Nilsson A, Sundh D, Bäckhed F, Lorentzon M. Lactobacillus reuteri reduces bone loss in older women with low bone mineral density: a randomized, placebo-controlled, double-blind, clinical trial. J Intern Med. 2018;284(3):307–17.
Article CAS PubMed Google Scholar
Walsh J, Griffin BT, Clarke G, Hyland NP. Drug–gut microbiota interactions: implications for neuropharmacology. Br J Pharmacol. 2018;175(24):4415–29.
Article CAS PubMed PubMed Central Google Scholar
Javdan B, Lopez JG, Chankhamjon P, Lee YC-J, Hull R, Wu Q, et al. Personalized mapping of drug metabolism by the human gut microbiome. Cell. 2020;181(7):1661-1679. e1622.
Article CAS PubMed PubMed Central Google Scholar
Weersma RK, Zhernakova A, Fu J. Interaction between drugs and the gut microbiome. Gut. 2020;69(8):1510–9.
Article CAS PubMed Google Scholar
Reginster J. Strontium ranelate in osteoporosis. Curr Pharm Des. 2002;8(21):1907–16.
Article CAS PubMed Google Scholar
Chen F, Wen Q, Jiang J, Li H-L, Tan Y-F, Li Y-H, et al. Could the gut microbiota reconcile the oral bioavailability conundrum of traditional herbs? J Ethnopharmacol. 2016;179:253–64.
Mardas N, Dereka X, Stavropoulos A, Patel M, Donos N. The role of strontium ranelate and guided bone regeneration in osteoporotic and healthy conditions. J Periodontal Res. 2021;56(2):330–8.
Article CAS PubMed Google Scholar
Rozman Grinberg I, Yin G, Borovok I, Berg Miller ME, Yeoman CJ, Dassa B, et al. Functional phylotyping approach for assessing intraspecific diversity of Ruminococcus albus within the rumen microbiome. FEMS Microbiol Lett. 2015;362(3):1–10.
Bolte LA, Vich Vila A, Imhann F, Collij V, Gacesa R, Peters V, et al. Long-term dietary patterns are associated with pro-inflammatory and anti-inflammatory features of the gut microbiome. Gut. 2021;70(7):1287–98.
Article CAS PubMed Google Scholar
Xu Z, Xie Z, Sun J, Huang S, Chen Y, Li C, et al. Gut microbiome reveals specific dysbiosis in primary osteoporosis. Front Cell Infect Mi. 2020;10:160.
Ma S, Qin J, Hao Y, Fu L. Association of gut microbiota composition and function with an aged rat model of senile osteoporosis using 16S rRNA and metagenomic sequencing analysis. Aging (Albany NY). 2020;12(11):10795.
Article CAS PubMed Google Scholar
Kim JN, Henriksen ED, Cann IK, Mackie RI. Nitrogen utilization and metabolism in Ruminococcus albus 8. Appl Environ Microbiol. 2014;80(10):3095–102.
Article PubMed PubMed Central Google Scholar
Park J, Lee J, Yeom Z, Heo D, Lim Y-H. Neuroprotective effect of Ruminococcus albus on oxidatively stressed SH-SY5Y cells and animals. Sci Rep. 2017;7(1):1–13.
Article PubMed PubMed Central Google Scholar
Rao LG, Krishnadev N, Banasikowska K, Rao AV. Lycopene I—effect on osteoclasts: lycopene inhibits basal and parathyroid hormone-stimulated osteoclast formation and mineral resorption mediated by reactive oxygen species in rat bone marrow cultures. J Med Food. 2003;6(2):69–78.
Article CAS PubMed Google Scholar
Costa-Rodrigues J, Fernandes MH, Pinho O, Monteiro PRR. Modulation of human osteoclastogenesis and osteoblastogenesis by lycopene. J Nutr Biochem. 2018;57:26–34.
Article CAS PubMed Google Scholar
Kim L, Rao AV, Rao LG. Lycopene II—effect on osteoblasts: the carotenoid lycopene stimulates cell proliferation and alkaline phosphatase activity of SaOS-2 cells. J Med Food. 2003;6(2):79–86.
Article CAS PubMed Google Scholar
Rao L, Mackinnon E, Josse R, Murray T, Strauss A, Rao A. Lycopene consumption decreases oxidative stress and bone resorption markers in postmenopausal women. Osteoporos Int. 2007;18(1):109–15.
Article CAS PubMed Google Scholar
Mackinnon E, Rao A, Josse R, Rao L. Supplementation with the antioxidant lycopene significantly decreases oxidative stress parameters and the bone resorption marker N-telopeptide of type I collagen in postmenopausal women. Osteoporos Int. 2011;22(4):1091–101.
Article CAS PubMed Google Scholar
Gentile CL, Weir TL. The gut microbiota at the intersection of diet and human health. Science. 2018;362(6416):776–80.
Comments (0)