Available online 25 November 2023
Mandibular third molar is prone to impaction, resulting in its inability to erupt into the oral cavity. The radiographic examination is required to support the odontectomy of impacted teeth. The use of computer-aided diagnosis based on deep learning is emerging in the field of medical and dentistry with the advancement of artificial intelligence (AI) technology. This review describes the performance and prospects of deep learning for the detection, classification, and evaluation of third molar-mandibular canal relationships on panoramic radiographs.
MethodsThis work was conducted using three databases: PubMed, Google Scholar, and Science Direct. Following the literature selection, 49 articles were reviewed, with the 12 main articles discussed in this review.
ResultsSeveral models of deep learning are currently used for segmentation and classification of third molar impaction with or without the combination of other techniques. Deep learning has demonstrated significant diagnostic performance in identifying mandibular impacted third molars (ITM) on panoramic radiographs, with an accuracy range of 78.91% to 90.23%. Meanwhile, the accuracy of deep learning in determining the relationship between ITM and the mandibular canal (MC) ranges from 72.32% to 99%.
ConclusionDeep learning-based AI with high performance for the detection, classification, and evaluation of the relationship of ITM to the MC using panoramic radiographs has been developed over the past decade. However, deep learning must be improved using large datasets, and the evaluation of diagnostic performance for deep learning models should be aligned with medical diagnostic test protocols. Future studies involving collaboration among oral radiologists, clinicians, and computer scientists are required to identify appropriate AI development models that are accurate, efficient, and applicable to clinical services.
Keywordsmandibular canal
radiograph
panoramic
deep learning
third molar
impacted
© 2023 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
Comments (0)