Mazurowski MA, Buda M, Saha A, Bashir MR (2019) Deep learning in radiology: an overview of the concepts and a survey of the state of the art with focus on MRI. J Magn Reson Imaging 49:939–954
Akkus Z, Galimzianova A, Hoogi A, Rubin DL, Erickson BJ (2017) Deep learning for brain MRI segmentation: state of the art and future directions. J Digit Imaging 30:449–459
Article PubMed PubMed Central Google Scholar
Ueda T, Ohno Y, Yamamoto K, Iwase A, Fukuba T, Hanamatsu S, Obama Y, Ikeda H, Ikedo M, Yui M, Murayama K, Toyama H (2021) Compressed sensing and deep learning reconstruction for women’s pelvic MRI denoising: utility for improving image quality and examination time in routine clinical practice. Eur J Radiol 134:109430
Do W, Seo S, Han Y, Ye JC, Choi SH, Park S (2020) Reconstruction of multicontrast MR images through deep learning. Med Phys 47:983–997
Sandino CM, Cheng JY, Chen F, Mardani M, Pauly JM, Vasanawala SS (2020) Compressed sensing: from research to clinical practice with deep neural networks: shortening scan times for magnetic resonance imaging. IEEE Signal Process Mag 37:117–127
Fuin N, Bustin A, Küstner T, Oksuz I, Clough J, King AP, Schnabel JA, Botnar RM, Prieto C (2020) A multi-scale variational neural network for accelerating motion-compensated whole-heart 3D coronary MR angiography. Magn Reson Imaging 70:155–167
Kwon K, Kim D, Park H (2017) A parallel MR imaging method using multilayer perceptron. Med Phys 44:6209–6224
Han Y, Yoo J, Kim HH, Shin HJ, Sung K, Ye JC (2018) Deep learning with domain adaptation for accelerated projection-reconstruction MR. Magn Reson Med 80:1189–1205
Lee D, Yoo J, Tak S, Ye JC (2018) Deep residual learning for accelerated MRI using magnitude and phase networks. IEEE Trans Biomed Eng 65:1985–1995
Han Y, Sunwoo L, Ye JC (2020) k-space deep learning for accelerated MRI. IEEE Trans Med Imaging 39:377–386
Ottesen JA, Caan MWA, Groote IR, Bjørnerud A (2023) A densely interconnected network for deep learning accelerated MRI. Magn Reson Mater Phys, Biol Med 36:65–77
Hashimoto F, Ote K, Oida T, Teramoto A, Ouchi Y (2020) Compressed-sensing magnetic resonance image reconstruction using an iterative convolutional neural network approach. Appl Sci 10:1902
Bustin A, Fuin N, Botnar RM, Prieto C (2020) From compressed-sensing to artificial intelligence-based cardiac MRI reconstruction. Front Cardiovasc Med. https://doi.org/10.3389/fcvm.2020.00017
Article PubMed PubMed Central Google Scholar
Hyun CM, Kim HP, Lee SM, Lee S, Seo JK (2018) Deep learning for undersampled MRI reconstruction. Phys Med Biol 63:135007
Chen Y, Shi F, Christodoulou AG, Xie Y, Zhou Z, Li D (2018) Efficient and accurate MRI super-resolution using a generative adversarial network and 3D multi-level densely connected network. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp 91–99
Mahapatra D, Bozorgtabar B, Garnavi R (2019) Image super-resolution using progressive generative adversarial networks for medical image analysis. Comput Med Imaging Graph 71:30–39
Lyu Q, Shan H, Wang G (2020) MRI super-resolution with ensemble learning and complementary priors. IEEE Trans Comput Imaging 6:615–624
Cole E, Cheng J, Pauly J, Vasanawala S (2021) Analysis of deep complex-valued convolutional neural networks for MRI reconstruction and phase-focused applications. Magn Reson Med 86:1093–1109
Article PubMed PubMed Central Google Scholar
Iqbal Z, Nguyen D, Hangel G, Motyka S, Bogner W, Jiang S (2019) Super-resolution 1H magnetic resonance spectroscopic imaging utilizing deep learning. Front Oncol. https://doi.org/10.3389/fonc.2019.01010
Article PubMed PubMed Central Google Scholar
Glang F, Deshmane A, Prokudin S, Martin F, Herz K, Lindig T, Bender B, Scheffler K, Zaiss M (2020) DeepCEST 3T: Robust MRI parameter determination and uncertainty quantification with neural networks—application to CEST imaging of the human brain at 3T. Magn Reson Med 84:450–466
Zaiss M, Deshmane A, Schuppert M, Herz K, Glang F, Ehses P, Lindig T, Bender B, Ernemann U, Scheffler K (2019) DeepCEST: 9.4 T Chemical exchange saturation transfer MRI contrast predicted from 3 T data - a proof of concept study. Magn Reson Med 81:3901–3914
LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444
Article CAS PubMed Google Scholar
Wang X, Xie L, Dong C, Shan Y (2021) Real-ESRGAN: training real-world blind super-resolution with pure synthetic Data. In: Proceedings of the IEEE/CVF international conference on computer vision, IEEE, Montreal, Canada, pp 1905–1914
Zhao H, Gallo O, Frosio I, Kautz J (2017) Loss functions for image restoration with neural networks. IEEE Trans Comput Imaging 3:47–57
Lin DJ, Johnson PM, Knoll F, Lui YW (2021) Artificial intelligence for mr image reconstruction: an overview for clinicians. J Magn Reson Imaging 53:1015–1028
He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, IEEE, Las Vegas, Nevada, US, 2016, pp 770–778
Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), IEEE, Boston, MA, USA, pp 1–9
Huang Q, Yang D, Xian Y, Wu P, Yi J, Qu H, Metaxas D (2020) Enhanced MRI reconstruction network using neural architecture search. In: Machine learning in medical imaging, MLM. Lecture notes in computer science, vol 12436. Springer, Cham, pp 634–643
Yang G, Yu S, Dong H, Slabaugh G, Dragotti PL, Ye X, Liu F, Arridge S, Keegan J, Guo Y, Firmin D (2018) DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction. IEEE Trans Med Imaging 37:1310–1321
Luo G, Zhao N, Jiang W, Hui ES, Cao P (2020) MRI reconstruction using deep Bayesian estimation. Magn Reson Med 84:2246–2261
Dror R, Shlomov S, Reichart R (2019) Deep dominance—how to properly compare deep neural models. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Stroudsburg, PA, USA, pp 2773–2785
Raschka S (2018) Model evaluation, model selection, and algorithm selection in machine learning. ArXiv Preprint arXiv:1811.12808
Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J, Burren Y, Porz N, Slotboom J, Wiest R, Lanczi L, Gerstner E, Weber M-A, Arbel T, Avants BB, Ayache N, Buendia P, Collins DL, Cordier N, Corso JJ, Criminisi A, Das T, Delingette H, Demiralp C, Durst CR, Dojat M, Doyle S, Festa J, Forbes F, Geremia E, Glocker B, Golland P, Guo X, Hamamci A, Iftekharuddin KM, Jena R, John NM, Konukoglu E, Lashkari D, Mariz JA, Meier R, Pereira S, Precup D, Price SJ, Raviv TR, Reza SMS, Ryan M, Sarikaya D, Schwartz L, Shin H-C, Shotton J, Silva CA, Sousa N, Subbanna NK, Szekely G, Taylor TJ, Thomas OM, Tustison NJ, Unal G, Vasseur F, Wintermark M, Ye DH, Zhao L, Zhao B, Zikic D, Prastawa M, Reyes M, Van Leemput K (2015) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34:1993–2024
Wahlang I, Maji AK, Saha G, Chakrabarti P, Jasinski M, Leonowicz Z, Jasinska E (2022) Brain magnetic resonance imaging classification using deep learning architectures with gender and age. Sensors 22:1766
Article PubMed PubMed Central Google Scholar
Cuocolo R, Comelli A, Stefano A, Benfante V, Dahiya N, Stanzione A, Castaldo A, De Lucia DR, Yezzi A, Imbriaco M (2021) Deep learning whole-gland and zonal prostate segmentation on a public MRI dataset. J Magn Reson Imaging 54:452–459
Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer, Berlin. https://doi.org/10.1007/b98882
Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference. International Publishing, Springer, Munich, Germany, pp 234–241
Hu X, Naiel MA, Wong A, Lamm M, Fieguth P (2019) RUNet: a robust UNet architecture for image super-resolution. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). https://doi.org/10.1109/CVPRW.2019.00073
Lin H, Figini M, Tanno R, Blumberg SB, Kaden E, Ogbole G, Brown BJ, D’Arco F, Carmichael DW, Lagunju I, Cross HJ, Fernandez-Reyes D, Alexander DC (2019) Deep learning for low-field to high-field MR: image quality transfer with probabilistic decimation simulator, pp 58–70
Masutani EM, Bahrami N, Hsiao A (2020) Deep learning single-frame and multiframe super-resolution for cardiac MRI. Radiology 295:552–561
Chatterjee S, Sarasaen C, Rose G, Nürnberger A, Speck O (2022) DDoS-UNet: incorporating temporal information using dynamic dual-channel UNet for enhancing super-resolution of dynamic MRI. ArXiv Preprint. arXiv:2202.05355
Chatterjee S, Sciarra A, Dunnwald M, Mushunuri RV, Podishetti R, Rao RN, Gopinath GD, Oeltze-Jafra S, Speck O, Nurnberger A (2021) ShuffleUNet: super resolution of diffusion-weighted MRIs using deep learning. In: 2021 29th European Signal Processing Conference (EUSIPCO). IEEE, pp 940–944
Ding PLK, Li Z, Zhou Y, Li B (2019) Deep residual dense U-Net for resolution enhancement in accelerated MRI acquisition. In: Angelini ED, Landman BA (eds) Medical imaging 2019: image processing. SPIE, San Diego, California, US, pp 110–117
Nasrin S, Alom MZ, Burada R, Taha TM, Asari VK (2019) Medical image denoising with recurrent residual U-Net (R2U-Net) base Auto-Encoder. In: 2019 IEEE National Aerospace and Electronics Conference (NAECON), IEEE, pp 345–350
Guan S, Khan AA, Sikdar S, Chitnis PV (2020) Fully dense UNet for 2-D sparse photoacoustic tomography artifact removal. IEEE J Biomed Health Inform 24:568–576
Kolarik M, Burget R, Uher V, Povoda L (2019) Superresolution of MRI brain images using unbalanced 3D Dense-U-Net network. In: 2019 42nd International Conference on Telecommunications and Signal Processing (TSP), IEEE, Budapest, Hungary, pp 643–646
Aghabiglou A, Eksioglu EM (2021) MR image reconstruction using densely connected residual convolutional networks. Comput Biol Med 139:105010
Acar V, Eksioglu EM (2021) Scale input adapted attention for image denoising using a densely connected U-Net: SADE-Net, pp 792–801
Sharma R, Tsiamyrtzis P, Webb AG, Seimenis I, Loukas C, Leiss E, Tsekos NV (2022) A deep learning approach to upscaling “low-quality” MR Images: an in silico comparison study based on the UNet framework. Appl Sci 12:11758
Ghodrati V, Shao J, Bydder M, Zhou Z, Yin W, Nguyen K-L, Yang Y, Hu P (2019) MR image reconstruction using deep learning: evaluation of network structure and loss functions. Quant Imaging Med Surg 9:1516–1527
Article PubMed PubMed Central Google Scholar
Isensee F, Kickingereder P, Wick W, Bendszus M, Maier-Hein KH (2019) No New-Net, pp 234–244
Li H, Liu J (2021) Edge, structure and texture refinement for retrospective high quality MRI restoration using deep learning. ArXiv Preprint. arXiv:2102.00325
Moran S, Marza P, McDonagh S, Parisot S, Slabaugh G (2020) DeepLPF: deep local parametric filters for image enhancement. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR). IEEE, Seattle, Washington, US, pp 12826–12835 .
Tao L, Zhu C, Xiang G, Li Y, Jia H, Xie X (2017) LLCNN: a convolutional neural network for low-light image enhancement. In: 2017 IEEE Visual Communications and Image Processing (VCIP), IEEE, St. Petersburg, FL, USA, pp 1–4
Ignatov A, Timofte R, van Vu T, Luu TM, Pham TX, van Nguyen C, Kim Y, Choi J-S, Kim M, Huang J, Ran J, Xing C, Zhou X, Zhu P, Geng M, Li Y, Agustsson E, Gu S, van Gool L, de Stoutz E, Kobyshev N, Nie K, Zhao Y, Li G, Tong
Comments (0)