Allen, J. S., Bruss, J., Brown, C. K., & Damasio, H. (2005). Normal neuroanatomical variation due to age: the major lobes and a parcellation of the temporal region. Neurobiol Aging, 26(9), 1245–1260; discussion 1279–1282.
Alvares Pereira, G., Silva Nunes, M. V., Alzola, P., & Contador, I. (2022). Cognitive reserve and brain maintenance in aging and Dementia: An integrative review. Appl Neuropsychol Adult, 29(6), 1615–1625.
Anatürk, M., Demnitz, N., Ebmeier, K. P., & Sexton, C. E. (2018). A systematic review and meta-analysis of structural magnetic resonance imaging studies investigating cognitive and social activity levels in older adults. Neuroscience and Biobehavioral Reviews, 93, 71–84.
Article PubMed PubMed Central Google Scholar
Andersson, J. L. R., & Sotiropoulos, S. N. (2016). An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage, 125, 1063–1078.
Andersson, J. L. R., Graham, M. S., Drobnjak, I., Zhang, H., & Campbell, J. (2018). Susceptibility-induced distortion that varies due to motion: Correction in diffusion MR without acquiring additional data. Neuroimage, 171, 277–295.
Anderton, B. H. (2002). Ageing of the Brain Mechanisms of Ageing and Development, 123(7), 811–817.
Article CAS PubMed Google Scholar
Arenaza-Urquijo, E. M., de Flores, R., Gonneaud, J., Wirth, M., Ourry, V., Callewaert, W., et al. (2017). Distinct effects of late adulthood cognitive and physical activities on gray matter volume. Brain Imaging Behav, 11(2), 346–356.
Badre, D., & Nee, D. E. (2018). Frontal Cortex and the Hierarchical Control of Behavior. Trends in Cognitive Sciences, 22(2), 170–188.
Baglio, F., Blasi, V., Falini, A., Farina, E., Mantovani, F., Olivotto, F., Scotti, G., Nemni, R., & Bozzali, M. (2011). Functional brain changes in early Parkinson’s Disease during motor response and motor inhibition. Neurobiology of Aging, 32(1), 115–124.
Bartrés-Faz, D., & Arenaza-Urquijo, E. M. (2011). Structural and functional imaging correlates of cognitive and brain reserve hypotheses in healthy and pathological aging. Brain Topography, 24(3–4), 340–357.
Barulli, D., & Stern, Y. (2013). Efficiency, capacity, compensation, maintenance, plasticity: Emerging concepts in cognitive reserve. Trends in Cognitive Sciences, 17(10), 502–509.
Bastin, C., Yakushev, I., Bahri, M. A., Fellgiebel, A., Eustache, F., Landeau, B., et al. (2012). Cognitive reserve impacts on inter-individual variability in resting-state cerebral metabolism in normal aging. Neuroimage, 63(2), 713–722.
Behrens, T. E., Woolrich, M. W., Jenkinson, M., Johansen-Berg, H., Nunes, R. G., Clare, S., et al. (2003). Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magnetic Resonance in Medicine, 50(5), 1077–1088.
Article CAS PubMed Google Scholar
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289–300.
Bergsland, N., Pelizzari, L., Laganá, M. M., Di Tella, S., Rossetto, F., Nemni, R. (2021). Automated Assessment of the Substantia Nigra Pars Compacta in Parkinson’s Disease: A Diffusion Tensor Imaging Study. J Pers Med, 11(11).
Braak, H., Del Tredici, K., Rüb, U., de Vos, R. A., Steur, J., E. N., & Braak, E. (2003). Staging of brain pathology related to sporadic Parkinson’s Disease. Neurobiology of Aging, 24(2), 197–211.
Cabeza, R., Albert, M., Belleville, S., Craik, F. I. M., Duarte, A., Grady, C. L., et al. (2018). Maintenance, reserve and compensation: The cognitive neuroscience of healthy ageing. Nature Reviews Neuroscience, 19(11), 701–710.
Article CAS PubMed PubMed Central Google Scholar
Chapko, D., McCormack, R., Black, C., Staff, R., & Murray, A. (2018). Life-course determinants of cognitive reserve (CR) in cognitive aging and Dementia - a systematic literature review. Aging & Mental Health, 22(8), 915–926.
Ciccarelli, N., Monaco, M. R. L., Fusco, D., Vetrano, D. L., Zuccalà, G., Bernabei, R., et al. (2018). The role of cognitive reserve in cognitive aging: What we can learn from Parkinson’s Disease. Aging Clinical and Experimental Research, 30(7), 877–880.
Ciccarelli, N., Colombo, B., Pepe, F., Magni, E., Antonietti, A., & Silveri, M. C. (2022). Cognitive reserve: A multidimensional protective factor in Parkinson’s Disease related cognitive impairment. Neuropsychology, Development, and Cognition. Section B, Aging, Neuropsychology and Cognition, 29(4), 687–702.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.).). Erlbaum.
Cohen, A. D., Price, J. C., Weissfeld, L. A., James, J., Rosario, B. L., Bi, W., et al. (2009). Basal cerebral metabolism may modulate the cognitive effects of Abeta in mild cognitive impairment: An example of brain reserve. Journal of Neuroscience, 29(47), 14770–14778.
Article CAS PubMed Google Scholar
Conti, L., Riccitelli, G. C., Preziosa, P., Vizzino, C., Marchesi, O., Rocca, M. A., et al. (2021). Effect of cognitive reserve on structural and functional MRI measures in healthy subjects: A multiparametric assessment. Journal of Neurology, 268(5), 1780–1791.
Cools, R. (2006). Dopaminergic modulation of cognitive function-implications for L-DOPA treatment in Parkinson’s Disease. Neuroscience and Biobehavioral Reviews, 30(1), 1–23.
Article CAS PubMed Google Scholar
de la Fuente-Fernández, R. (2012). Frontostriatal cognitive staging in Parkinson’s Disease. Parkinson’s Disease, 2012, 561046.
DeLong, M., & Wichmann, T. (2009). Update on models of basal ganglia function and dysfunction. Parkinsonism & Related Disorders, 15(03), S237–S240. Suppl 3.
Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., et al. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage, 31(3), 968–980.
Di Tella, S., De Marco, M., Baglio, F., Silveri, M. C., & Venneri, A. (2023). Resting-state functional connectivity is modulated by cognitive reserve in early Parkinson’s disease (p. 14). Front Psychol.
Driscoll, I., Davatzikos, C., An, Y., Wu, X., Shen, D., Kraut, M., et al. (2009). Longitudinal pattern of regional brain volume change differentiates normal aging from MCI. Neurology, 72(22), 1906–1913.
Article CAS PubMed PubMed Central Google Scholar
Dumurgier, J., Paquet, C., Benisty, S., Kiffel, C., Lidy, C., Mouton-Liger, F., et al. (2010). Inverse association between CSF Aβ 42 levels and years of education in mild form of Alzheimer’s Disease: The cognitive reserve theory. Neurobiology of Diseases, 40(2), 456–459.
Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., et al. (2002). Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron, 33(3), 341–355.
Article CAS PubMed Google Scholar
Goetz, C. G., Poewe, W., Rascol, O., Sampaio, C., Stebbins, G. T., Counsell, C., et al. (2004). Movement Disorder Society Task Force report on the Hoehn and Yahr staging scale: Status and recommendations. Movement Disorders, 19(9), 1020–1028.
Goldman, J. G., & Sieg, E. (2020). Cognitive impairment and Dementia in Parkinson Disease. Clinics in Geriatric Medicine, 36(2), 365–377.
Guzzetti, S., Mancini, F., Caporali, A., Manfredi, L., & Daini, R. (2019). The association of cognitive reserve with motor and cognitive functions for different stages of Parkinson’s Disease. Experimental Gerontology, 115, 79–87.
Hindle, J. V., Martyr, A., & Clare, L. (2014). Cognitive reserve in Parkinson’s Disease: A systematic review and meta-analysis. Parkinsonism & Related Disorders, 20(1), 1–7.
Klaissle, P., Lesemann, A., Huehnchen, P., Hermann, A., Storch, A., & Steiner, B. (2012). Physical activity and environmental enrichment regulate the generation of neural precursors in the adult mouse substantia nigra in a dopamine-dependent manner. Bmc Neuroscience, 13, 132.
Article PubMed PubMed Central Google Scholar
Klapwijk, E. T., van de Kamp, F., van der Meulen, M., Peters, S., & Wierenga, L. M. (2019). Qoala-T: A supervised-learning tool for quality control of FreeSurfer segmented MRI data. Neuroimage, 189, 116–129.
Li, X., Xing, Y., Martin-Bastida, A., Piccini, P., & Auer, D. P. (2018). Patterns of grey matter loss associated with motor subscores in early Parkinson’s Disease. Neuroimage Clin, 17, 498–504.
Li, R., Zou, T., Wang, X., Wang, H., Hu, X., Xie, F., et al. (2022). Basal ganglia atrophy-associated causal structural network degeneration in Parkinson’s Disease. Human Brain Mapping, 43(3), 1145–1156.
Loftus, A. M., Gasson, N., Lopez, N., Sellner, M., Reid, C., Cocks, N., et al. (2021). Cognitive Reserve, executive function, and memory in Parkinson’s Disease. Brain Sci, 11, 8.
Mandolesi, L., De Bartolo, P., Foti, F., Gelfo, F., Federico, F., Leggio, M. G., et al. (2008). Environmental enrichment provides a cognitive reserve to be spent in the case of brain lesion. Journal of Alzheimer’s Disease, 15(1), 11–28.
Meng, X., & D’Arcy, C. (2012). Education and Dementia in the context of the cognitive reserve hypothesis: A systematic review with meta-analyses and qualitative analyses. PLoS One, 7(6), e38268.
Mora, F. (2013). Successful brain aging: Plasticity, environmental enrichment, and lifestyle. Dialogues Clin Neurosci, 15(1), 45–52.
Comments (0)