What can we learn from a Chinese social media used by glaucoma patients?

Song P, Wang J, Bucan K, Theodoratou E, Rudan I, Chan KY. National and subnational prevalence and burden of glaucoma in China: a systematic analysis. J Global Health. 2017;7(2):020705.

Article  Google Scholar 

Agorastos A, Skevas C, Matthaei M, Otte C, Klemm M, Richard G, Huber CG. Depression, anxiety, and disturbed sleep in glaucoma. J Neuropsychiatry Clin Neurosci. 2013;25(3):205–13.

Article  PubMed  Google Scholar 

Yochim BP, Mueller AE, Kane KD, Kahook MY. Prevalence of cognitive impairment, depression, and anxiety symptoms among older adults with glaucoma. J Glaucoma. 2012;21(4):250–4.

Article  PubMed  Google Scholar 

Wang SY, Singh K, Lin SC. Prevalence and predictors of depression among participants with glaucoma in a nationally representative population sample. Am J Ophthalmol. 2012;154(3):436–444e432.

Article  PubMed  PubMed Central  Google Scholar 

Popescu ML, Boisjoly H, Schmaltz H, Kergoat MJ, Rousseau J, Moghadaszadeh S, Djafari F, Freeman EE. Explaining the relationship between three eye Diseases and depressive symptoms in older adults. Investig Ophthalmol Vis Sci. 2012;53(4):2308–13.

Article  Google Scholar 

Holló G, Kóthy P, Géczy A, Vargha P. Personality traits, depression, and objectively measured adherence to once-daily prostaglandin analog medication in glaucoma. J Glaucoma. 2009;18(4):288–92.

Article  PubMed  Google Scholar 

Skalicky S, Goldberg I. Depression and quality of life in patients with glaucoma: a cross-sectional analysis using the geriatric depression Scale-15, assessment of function related to vision, and the Glaucoma quality of Life-15. J Glaucoma. 2008;17(7):546–51.

Article  PubMed  Google Scholar 

Mabuchi F, Yoshimura K, Kashiwagi K, Shioe K, Yamagata Z, Kanba S, Iijima H, Tsukahara S. High prevalence of anxiety and depression in patients with primary open-angle glaucoma. J Glaucoma. 2008;17(7):552–7.

Article  PubMed  Google Scholar 

Jampel HD, Frick KD, Janz NK, Wren PA, Musch DC, Rimal R, Lichter PR. Depression and mood indicators in newly diagnosed glaucoma patients. Am J Ophthalmol. 2007;144(2):238–44.

Article  PubMed  Google Scholar 

Wilson MR, Coleman AL, Yu F, Fong Sasaki I, Bing EG, Kim MH. Depression in patients with glaucoma as measured by self-report surveys. Ophthalmology. 2002;109(5):1018–22.

Article  PubMed  Google Scholar 

Hugues FC, Le Jeunne C. Systemic and local tolerability of ophthalmic drug formulations. An update. Drug Saf. 1993;8(5):365–80.

Article  CAS  PubMed  Google Scholar 

Marquis MS, Davies AR, Ware JE Jr. Patient satisfaction and change in medical care provider: a longitudinal study. Med Care. 1983;21(8):821–9.

Article  CAS  PubMed  Google Scholar 

Guldvog B. Can patient satisfaction improve health among patients with Angina Pectoris? Int J Qual Health care: J Int Soc Qual Health Care. 1999;11(3):233–40.

Article  CAS  Google Scholar 

Lee PP. Outcomes and endpoints in glaucoma. J Glaucoma. 1996;5(4):295–7.

CAS  PubMed  Google Scholar 

Qian Z, Xie X, Yang J, Ye H, Wang Z, Chen J, Liu H, Liang J, Jiang L, Zheng C, et al. Detection of shallow anterior chamber depth from two-dimensional anterior segment photographs using deep learning. BMC Ophthalmol. 2021;21(1):341.

Article  PubMed  PubMed Central  Google Scholar 

Liu C, Lu X. Analyzing hidden populations online: topic, emotion, and social network of HIV-related users in the largest Chinese online community. BMC Med Inf Decis Mak. 2018;18(1):2.

Article  Google Scholar 

Gesualdo F, Stilo G, D’Ambrosio A, Carloni E, Pandolfi E, Velardi P, Fiocchi A, Tozzi AE. Can Twitter be a Source of Information on Allergy? Correlation of Pollen counts with tweets reporting symptoms of allergic rhinoconjunctivitis and names of Antihistamine Drugs. PLoS ONE. 2015;10(7):e0133706.

Article  PubMed  PubMed Central  Google Scholar 

Young SD, Torrone EA, Urata J, Aral SO. Using search Engine Data as a Tool to predict Syphilis. Epidemiol (Cambridge Mass). 2018;29(4):574–8.

Article  Google Scholar 

Deiner MS, Lietman TM, McLeod SD, Chodosh J, Porco TC. Surveillance tools emerging from search engines and Social Media Data for determining Eye Disease patterns. JAMA Ophthalmol. 2016;134(9):1024–30.

Article  PubMed  PubMed Central  Google Scholar 

Dong Y, Zhou X, Lin Y, Pan Q, Wang Y. HIV-related posts from a Chinese internet discussion forum: an exploratory study. PLoS ONE. 2019;14(2):e0213066.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grewal PS, Oloumi F, Rubin U, Tennant MTS. Deep learning in ophthalmology: a review. Can J Ophthalmol J Canadien D’ophtalmologie. 2018;53(4):309–13.

Article  Google Scholar 

McGregor F, Somner JE, Bourne RR, Munn-Giddings C, Shah P, Cross V. Social media use by patients with glaucoma: what can we learn? Ophthalmic & Physiological Optics: The Journal of the British College of Ophthalmic Opticians (Optometrists). 2014;34(1):46–52.

Article  Google Scholar 

Weijian Xie WX, Huang P, Zhang X, Hong K, Huang Q, Chen B, Huang L. Chinese Spelling Check System Based on N-gram Model; 2015.

Okon E, Rachakonda V, Hong HJ, Callison-Burch C, Lipoff JB. Natural language processing of Reddit data to evaluate dermatology patient experiences and therapeutics. J Am Acad Dermatol. 2020;83(3):803–8.

Article  PubMed  Google Scholar 

Graves A, Schmidhuber J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Networks: The Official Journal of the International Neural Network Society. 2005;18(5–6):602–10.

Article  PubMed  Google Scholar 

Bengio Y, Simard P, Frasconi P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans Neural Networks. 1994;5(2):157–66.

Article  CAS  PubMed  Google Scholar 

Devlin J, Chang M-W, Lee K, Toutanova K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In: NAACL: 2019; 2019.

Peters ME, Neumann M, Iyyer M, Gardner M, Clark C, Lee K, Zettlemoyer L. Deep Contextualized Word Representations. In: NAACL: 2018; 2018.

Li S, Zhao Z, Hu R, Li W, Liu T, Du X. Analogical Reasoning on Chinese Morphological and Semantic Relations; 2018.

Xie J, Liu X, Zeng DD. Mining e-cigarette adverse events in social media using Bi-LSTM recurrent neural network with word embedding representation. J Am Med Inf Association: JAMIA 2017, 25.

Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159–74.

Article  CAS  PubMed  Google Scholar 

Tahami Monfared AA, Stern Y, Doogan S, Irizarry M, Zhang Q. Stakeholder insights in Alzheimer’s Disease: Natural Language Processing of Social Media conversations. J Alzheimer’s Disease: JAD. 2022;89(2):695–708.

Article  PubMed  Google Scholar 

Kim NH, Kim JM, Park DM, Ji SR, Kim JW. Analysis of depression in social media texts through the Patient Health Questionnaire-9 and natural language processing. Digit Health. 2022;8:20552076221114204.

PubMed  PubMed Central  Google Scholar 

Le Glaz A, Haralambous Y, Kim-Dufor DH, Lenca P, Billot R, Ryan TC, Marsh J, DeVylder J, Walter M, Berrouiguet S, et al. Machine Learning and Natural Language Processing in Mental Health: systematic review. J Med Internet Res. 2021;23(5):e15708.

Article  PubMed  PubMed Central  Google Scholar 

Press VG, Nyenhuis SM. Do no harm: natural language processing of social media supports safety of aseptic allergen immunotherapy procedures. J Allergy Clin Immunol. 2019;144(1):38–40.

Article  PubMed  Google Scholar 

Coppersmith G, Leary R, Crutchley P, Fine A. Natural Language Processing of Social Media as screening for Suicide risk. Biomedical Inf Insights. 2018;10:1178222618792860.

Google Scholar 

Signorini A, Segre AM, Polgreen PM. The use of Twitter to track levels of Disease activity and public concern in the U.S. during the Influenza a H1N1 pandemic. PLoS ONE. 2011;6(5):e19467.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Young SD. Behavioral insights on big data: using social media for predicting biomedical outcomes. Trends Microbiol. 2014;22(11):601–2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Young SD, Rivers C, Lewis B. Methods of using real-time social media technologies for detection and remote monitoring of HIV outcomes. Prev Med. 2014;63:112–5.

Article  PubMed  PubMed Central  Google Scholar 

Young SD, Mercer N, Weiss RE, Torrone EA, Aral SO. Using social media as a tool to predict Syphilis. Prev Med. 2018;109:58–61.

Article  PubMed  Google Scholar 

Zhang S, Liang Y, Chen Y, Musch DC, Zhang C, Wang N. Utility Analysis of Vision-related quality of life in patients with Glaucoma and different perceptions from ophthalmologists. J Glaucoma. 2015;24(7):508–14.

Article  PubMed  Google Scholar 

Eisenberg DL, Toris CB, Camras CB. Bimatoprost and travoprost: a review of recent studies of two new glaucoma Drugs. Surv Ophthalmol. 2002;47(Suppl 1):105–15.

Article  Google Scholar 

Whitson JT. Travoprost–a new prostaglandin analogue for the treatment of glaucoma. Expert Opin Pharmacother. 2002;3(7):965–77.

Article  CAS  PubMed  Google Scholar 

Holmstrom S, Buchholz P, Walt J, Wickstrøm J, Aagren M. Analytic review of bimatoprost, latanoprost and travoprost in primary open angle glaucoma. Curr Med Res Opin. 2005;21(11):1875–83.

Article  CAS  PubMed 

Comments (0)

No login
gif