Berg KA, Lyra C, Sivonen K, Paulin L, Suomalainen S, Tuomi P, Rapala J (2009) High diversity of cultivable heterotrophic bacteria in association with cyanobacterial water blooms. ISME J 3:314–325
Brunberg AK (1999) Contribution of bacteria in the mucilage of Microcystis spp. (Cyanobacteria) to benthic and pelagic bacterial production in a hypereutrophic lake. FEMS Microbiol Ecol 29:13–22
Bukowska A, Kaliński T, Chróst RJ (2018) Degradation of microcystins by water and bottom sediment bacterial communities from a eutrophic freshwater lake. Aquat Microb Ecol 82(2):129–144. https://doi.org/10.3354/ame01887
Cai HY, Yan ZS, Wang AJ, Krumholz LR, Jiang HL (2013) Analysis of the attached microbial community on mucilaginous cyanobacterial aggregates in the eutrophic Lake Taihu reveals the importance of Planctomycetes. Microb Ecol 66:73–83
Cai H, Jiang H, Krumholz LR, Yang Z (2014) Bacterial community composition of size-fractioned aggregates within the phycosphere of cyanobacterial blooms in a eutrophic freshwater lake. PLoS ONE 9(8):e102879. https://doi.org/10.1371/journal.pone.0102879
Caron DA, Goldman JC, Dennett MR (1986) Effect of temperature on growth, respiration and nutrient regeneration by an omnivorous microflagellate. Appl Environ Microbiol 52:1340–1347
Chen Y, Qin B, Teubner K, Dokulil MT (2003) Long-term dynamics of phytoplankton assemblages: Microcystis-domination in Lake Taihu, a large shallow lake in China. J Plankton Res 25(4):445–453. https://doi.org/10.1093/plankt/25.4.445
Chen YL, Lee CC, Lin YL, Yin KM, Ho CL, Liu T (2015) Obtaining long 16S rDNA sequences using multiple primers and its application on dioxin-containing samples. BMC Bioinformatics 16(18):1–1
Clarke KR, Gorley RN (2006) PRIMER V6: User Manual/Tutorial. PRIMER-E, Plymouth, pp 192
Cottrell MT, Kirchman DL (2000) Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low-and high-molecular-weight dissolved organic matter. Appl Environ Microbiol 66(4):1692–1697. https://doi.org/10.1128/aem.66.4.1692-1697.2000
Czerwińska-Główka D, Przystaś W, Zabłocka-Godlewska E, Student S, Cwalina B, Łapkowski M, Krukiewicz K (2021) Electrically-responsive antimicrobial coatings based on a tetracycline-loaded poly (3, 4-ethylenedioxythiophene) matrix. Mater Sci Eng C 123:112017. https://doi.org/10.1016/j.msec.2021.112017
Dai W, Ruan W, Bi X, Zhang D (2022) The role of attached bacteria in the formation of Microcystis colony in Chentaizi River. Water Sci Technol 86(5):968–978. https://doi.org/10.2166/wst.2022.277
Dashti AA, Jadaon MM, Abdulsamad AM, Dashti HM (2009) Heat treatment of bacteria: a simple method of DNA extraction for molecular techniques. Kuwait Med J 41(2):117–122
DavisT BDL, Boyer GL, Gobler CJ (2009) The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacterial blooms. Harmful Algae 8:715–725
Deng Y, Zhang P, Qin Y, Tu Q, Yang Y, He Z, Schadt CW, Zhou J (2016) Network succession reveals the importance of competition in response to emulsified vegetable oil amendment for uranium bioremediation. Environ Microbiol 18(1):205–218. https://doi.org/10.1111/1462-2920.12981
Desikachary TV (1959) Cyanophyta, Indian Council of Agricultural Research. New Delhi, pp 81–99
Dick GJ, Duhaime MB, Evans JT, Errera RM, Godwin CM, Kharbush JJ, Nitschky HS, Powers MA, Vanderploeg HA, Schmidt KC, Smith DJ (2021) The genetic and ecophysiological diversity of Microcystis. Environ Microbiol 23(12):7278–7313. https://doi.org/10.1111/1462-2920.15615
Dziallas C, Grossart HP (2011) Temperature and biotic factors influence bacterial communities associated with the cyanobacterium Microcystis sp. Environ Microbiol 13:1632–1641. https://doi.org/10.1111/j.1462-2920.2011.02479.x
Eiler A, Bertilsson S (2004) Composition of freshwater bacterial communities associated with cyanobacterial blooms in four Swedish lakes. Environ Microbiol 6(12):1228–1243. https://doi.org/10.1111/j.1462-2920.2004.00657.x
Felip M, Catalan J (2000) The relationship between phytoplankton biovolume and chlorophyll in a deep oligotrophic lake: decoupling in their spatial and temporal maxima. J Plankton Res 22(1):91–106. https://doi.org/10.1093/plankt/22.1.91
Gobler CJ, Jankowiak JG (2022) Dynamic responses of endosymbiotic microbial communities within Microcystis colonies in North American lakes to altered nitrogen, phosphorus, and temperature levels. Front Microbiol 12:781500. https://doi.org/10.3389/fmicb.2021.781500
Grasshoff K, Ehrhardt M, Kremling K, Almgren T (1983) Method of seawater analysis. Verlag Chemie, Weinheim, Germany, p 419
Grossart HP, Levold F, Allgaier M, Simon M, Brinkhoff T (2005) Marine diatom species harbour distinct bacterial communities. Environ Microbiol 7(6):860–873. https://doi.org/10.1111/j.1462-2920.2005.00759.x
Harke MJ, Steffen MM, Gobler CJ, Otten TG, Wilhelm SW, Wood SA, Paerl HW (2016) A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae 54:4–20. https://doi.org/10.1016/j.hal.2015.12.007
Havens KE (2008) Cyanobacteria blooms: effects on aquatic ecosystems. Cyanobacterial harmful algal blooms: state of the science and research needs 733–47. https://doi.org/10.1007/978-0-387-75865-7_33
Hoke AK, Reynoso G, Smith MR, Gardner MI, Lockwood DJ, Gilbert NE, Wilhelm SW, Becker IR, Brennan GJ, Crider KE, Farnan SR (2021) Genomic signatures of Lake Erie bacteria suggest interaction in the Microcystis phycosphere. PLoS ONE 16(9):e0257017. https://doi.org/10.1371/journal.pone.0257017
Hou X, Yan Y, Wang Y, Jiang T, Zhang X, Dai X, Igarashi Y, Luo F, Yang C (2023) An insight into algicidal characteristics of Bacillus altitudinis G3 from dysfunctional photosystem and overproduction of reactive oxygen species. Chemosphere 310:136767. https://doi.org/10.1016/j.chemosphere.2022.136767
Huang Y, Chen M (2013) Variation of dissolved oxygen in the experiments of occurrence & disappearance for Microcystis bloom. Procedia Environ Sci 18:559–566
Imai H, Chang KH, Kusaba M, Nakano SI (2009) Temperature-dependent dominance of Microcystis (Cyanophyceae) species: M. aeruginosa and M. wesenbergii. J Plankton Res 31(2):171–8
Jiang L, Yang L, Xiao L, Shi X, Gao G, Qin B (2007) Quantitative studies on phosphorus transference occuring between Microcystis aeruginosa and its attached bacterium (Pseudomonas sp.). In Eutrophication of shallow lakes with special reference to Lake Taihu, China, Springer, Dordrecht. pp. 161–165
Jones GJ, Bourne DG, Blakeley RL, Doelle H (1994) Degradation of the cyanobacterial hepatotoxin microcystins by aquatic bacteria. Nat Toxins 2:228–235. https://doi.org/10.1002/nt.2620020412
Kansole MM, Lin TF (2016) Microcystin-LR biodegradation by Bacillus sp.: reaction rates and possible genes involved in the degradation. Water 8(11):508. https://doi.org/10.3390/w8110508
Khong NM, Khaw YS, Nazarudin MF, Yusoff FM (2019) Microcystis aeruginosa grown in different defined media leads to different cultivable heterotrophic bacteria composition that could influence cyanobacterial morphological characteristics and growth properties. BioRxiv 31:721175. https://doi.org/10.1101/721175
Kim M, Lee J, Yang D, Park HY, Park W (2020) Seasonal dynamics of the bacterial communities associated with cyanobacterial blooms in the Han River. Environ Pollut 266:115198. https://doi.org/10.1016/j.envpol.2020.115198
Ko SR, Lee YK, Oh HM, Ahn CY (2013) A novel microcystin-degrading bacterium, Microbacterium sp. MA21. Korean J Environ Biol 31(2):158–64
Kormas KA, Lymperopoulou DS (2013) Cyanobacterial toxin degrading bacteria: who are they? Biomed Res Int. https://doi.org/10.1155/2013/463894
Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549
Li H, Ai H, Kang L, Sun X, He Q (2016) Simultaneous Microcystis algicidal and microcystin degrading capability by a single Acinetobacter bacterial strain. Environ Sci Technol 50(21):11903–11911. https://doi.org/10.1021/acs.est.6b03986
Liba CM, Ferrara FI, Manfio GP, Fantinatti-Garboggini F, Albuquerque RC, Pavan C, Ramos PL, Moreira-Filho CA, Barbosa HR (2006) Nitrogen-fixing chemo-organotrophic bacteria isolated from cyanobacteria-deprived lichens and their ability to solubilize phosphate and to release amino acids and phytohormones. J Appl Microbiol 101(5):1076–1086. https://doi.org/10.1111/j.1365-2672.2006.03010.x
Mankiewicz-Boczek J, Font-Nájera A (2022) Temporal and functional interrelationships between bacterioplankton communities and the development of a toxigenic Microcystis bloom in a lowland European reservoir. Sci Rep 12(1):19332. https://doi.org/10.1038/s41598-022-23671-2
Meng-ke Li XIA, Yun-sheng S-Z, Tong JI, Xiao-long CUI, Wei XIAO, Shi-ying ZHANG (2019) Diversity of bacteria associated with three strains of cyanobacteria and their effects on the proliferation of Microcystis aeruginosa[J]. Journal of Yunnan University: Natural Sciences Edition 41(6):1238–1245. https://doi.org/10.7540/j.ynu.20190110
Mohan R, Sathish T, Padmakumar KB (2020) Occurrence of potentially toxic cyanobacteria Microcystis aeruginosa in aquatic ecosystems of central Kerala (south India). Annales De Limnologie-International Journal of Limnology 56:18. https://doi.org/10.1051/limn/2020015
Oliver RL, Ganf GG. Freshwater blooms (2000) In The ecology of cyanobacteria: their diversity in time and space, Dordrecht: Springer Netherlands pp. 149–194. https://doi.org/10.1007/0-306-46855-7_6
Osman OA, Beier S, Grabherr M, Bertilsson S (2017) Interactions of freshwater cyanobacteria with bacterial antagonists. Appl Environ Microbiol 83(7):e02634-e2716. https://doi.org/10.1128/AEM.02634-16
Paerl HW, Barnard MA (2020) Mitigating the global expansion of harmful cyanobacterial blooms: moving targets in a human-and climatically-altered world. Harmful Algae 96:101845. https://doi.org/10.1016/j.hal.2020.101845
Paerl HW, Otten TG (2013) Harmful cyanobacterial blooms: causes, consequences, and controls. Microb Ecol 65(4):995–1010. https://doi.org/10.1007/s00248-012-0159-y
Paerl HW, Otten TG (2016) Duelling ‘CyanoHABs’: unravelling the environmental drivers controlling dominance and succession among diazotrophic and non-N2-fixing harmful cyanobacteria. Environ Microbiol 18(2):316–324. https://doi.org/10.1111/1462-2920.13035
Comments (0)