Van de Beek D, Brouwer M, Hasbun R, Koedel U, Whitney CG, Wijdicks E. Community-acquired bacterial meningitis. Nat Rev Dis Primers. 2016;2:16074.
Van de Beek D, Brouwer MC, Koedel U, Wall EC. Community-acquired bacterial meningitis. Lancet. 2021;398:1171–83.
Weber JR, Tuomanen EI. Cellular damage in bacterial meningitis: an interplay of bacterial and host driven toxicity. J Neuroimmunol. 2007;184:45–52.
Article CAS PubMed Google Scholar
Zanluqui NG, McGavern DB. Bacterial meningitis hits an immunosuppressive nerve. Nature. 2023;615:396.
Article CAS PubMed Google Scholar
Pinho-Ribeiro FA, Deng L, Neel DV, Erdogan O, Basu H, Yang D, Choi S, Walker AJ, Carneiro-Nascimento S, He K, Wu G, Stevens B, Doran KS, Levy D, Chiu IM. Bacteria hijack a meningeal neuroimmune axis to facilitate brain invasion. Nature. 2023;615:472.
Article CAS PubMed PubMed Central Google Scholar
Polfliet MM, Zwijnenburg PJ, Van Furth AM, van Der P, Dopp EA, Renardel DL, van Kesteren-Hendrikx EM, Van Rooijen N, Dijkstra CD, van Den Berg TK. Meningeal and perivascular macrophages of the central nervous system play a protective role during bacterial meningitis. J Immunol. 2001;167:4644–50.
Article CAS PubMed Google Scholar
Trostdorf F, Bruck W, Schmitz-Salue M, Stuertz K, Hopkins SJ, van Rooijen N, Huitinga I, Nau R. Reduction of meningeal macrophages does not decrease migration of granulocytes into the CSF and brain parenchyma in experimental pneumococcal meningitis. J Neuroimmunol. 1999;99:205–10.
Article CAS PubMed Google Scholar
Händle P, Dyckhoff-Shen S, Angele B, Gorka O, Pfister H-W, Gross O, Kirschning CJ, Klein M, Koedel U. Macrophage pyroptosis aggravates inflammation and pathology in murine pneumococcal meningitis. ECCMID 2020, Paris (Online) ID5155: 2022.
Jansson D, Rustenhoven J, Feng S, Hurley D, Oldfield RL, Bergin PS, Mee EW, Faull RL, Dragunow M. A role for human brain pericytes in neuroinflammation. J Neuroinflammation. 2014;11:104.
Article PubMed PubMed Central Google Scholar
Rustenhoven J, Jansson D, Smyth LC, Dragunow M. Brain pericytes as mediators of neuroinflammation. Trends Pharmacol Sci. 2017;38:291–304.
Article CAS PubMed Google Scholar
Barkaway A, Attwell D, Korte N. Immune-vascular mural cell interactions: consequences for immune cell trafficking, cerebral blood flow, and the blood-brain barrier. Neurophotonics. 2022;9: 031914.
Article CAS PubMed PubMed Central Google Scholar
Medina-Flores F, Hurtado-Alvarado G, Deli MA, Gomez-Gonzalez B. The active role of pericytes during neuroinflammation in the adult brain. Cell Mol Neurobiol. 2022;43:525.
Alarcon-Martinez L, Yemisci M, Dalkara T. Pericyte morphology and function. Histol Histopathol. 2021;36:633–43.
Nyul-Toth A, Kozma M, Nagyoszi P, Nagy K, Fazakas C, Hasko J, Molnar K, Farkas AE, Vegh AG, Varo G, Galajda P, Wilhelm I, Krizbai IA. Expression of pattern recognition receptors and activation of the non-canonical inflammasome pathway in brain pericytes. Brain Behav Immun. 2017;64:220–31.
Article CAS PubMed Google Scholar
Kovac A, Erickson MA, Banks WA. Brain microvascular pericytes are immunoactive in culture: cytokine, chemokine, nitric oxide, and LRP-1 expression in response to lipopolysaccharide. J Neuroinflammation. 2011;8:139.
Article CAS PubMed PubMed Central Google Scholar
Pieper C, Marek JJ, Unterberg M, Schwerdtle T, Galla HJ. Brain capillary pericytes contribute to the immune defense in response to cytokines or LPS in vitro. Brain Res. 2014;1550:1–8.
Article CAS PubMed Google Scholar
Matsumoto J, Takata F, Machida T, Takahashi H, Soejima Y, Funakoshi M, Futagami K, Yamauchi A, Dohgu S, Kataoka Y. Tumor necrosis factor-alpha-stimulated brain pericytes possess a unique cytokine and chemokine release profile and enhance microglial activation. Neurosci Lett. 2014;578:133–8.
Article CAS PubMed Google Scholar
Pieper C, Pieloch P, Galla HJ. Pericytes support neutrophil transmigration via interleukin-8 across a porcine co-culture model of the blood-brain barrier. Brain Res. 2013;1524:1–11.
Article CAS PubMed Google Scholar
Kristensson K, Olsson Y. Accumulation of protein tracers in pericytes of the central nervous system following systemic injection in immature mice. Acta Neurol Scand. 1973;49:189–94.
Article CAS PubMed Google Scholar
Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, Johansson BR, Betsholtz C. Pericytes regulate the blood-brain barrier. Nature. 2010;468:557–61.
Article CAS PubMed Google Scholar
Villasenor R, Kuennecke B, Ozmen L, Ammann M, Kugler C, Gruninger F, Loetscher H, Freskgard PO, Collin L. Region-specific permeability of the blood-brain barrier upon pericyte loss. J Cereb Blood Flow Metab. 2017;37:3683–94.
Article PubMed PubMed Central Google Scholar
Mäe MA, He L, Nordling S, Vazquez-Liebanas E, Nahar K, Jung B, Li X, Tan BC, Foo JC, Cazenave GA, Wenk M, Zarb Y, Lavina B, Quaggin SE, Jeansson M, Gu C, Silver D, Michael VM, Butcher EC, Keller A, Betsholtz C. Single-cell analysis of blood-brain barrier response to pericyte loss. Circ Res. 2021;128(4):e46–62.
Caporarello N, Olivieri M, Cristaldi M, Scalia M, Toscano MA, Genovese C, Addamo A, Salmeri M, Lupo G, Anfuso CD. Blood-brain barrier in a haemophilus influenzae type a in vitro infection: role of adenosine receptors A2A and A2B. Mol Neurobiol. 2018;55(6):5321–36.
Article CAS PubMed Google Scholar
Salmeri M, Motta C, Anfuso CD, Amodeo A, Scalia M, Toscano MA, Alberghina M, Lupo G. VEGF receptor-1 involvement in pericyte loss induced by Escherichia coli in an in vitro model of blood brain barrier. Cell Microbiol. 2013;15:1367–84.
Article CAS PubMed Google Scholar
Gil E, Venturini C, Stirling D, Turner C, Tezera LB, Ercoli G, Baker T, Best K, Brown JS, Noursadeghi M. Pericyte derived chemokines amplify neutrophil recruitment across the cerebrovascular endothelial barrier. Front Immunol. 2022;13: 935798.
Article CAS PubMed PubMed Central Google Scholar
Tigges U, Welser-Alves JV, Boroujerdi A, Milner R. A novel and simple method for culturing pericytes from mouse brain. Microvasc Res. 2012;84:74–80.
Article CAS PubMed PubMed Central Google Scholar
Martens P, Worm SW, Lundgren B, Konradsen HB, Benfield T. Serotype-specific mortality from invasive Streptococcus pneumoniae disease revisited. BMC Infect Dis. 2004;4:21.
Article PubMed PubMed Central Google Scholar
Müller A, Salmen A, Aebi S, de Gouveia L, von Gottberg A, Hathaway LJ. Pneumococcal serotype determines growth and capsule size in human cerebrospinal fluid. BMC Microbiol. 2020;20:16.
Article PubMed PubMed Central Google Scholar
Hathaway LJ, Grandgirard D, Valente LG, Tauber MG, Leib SL. Streptococcus pneumoniae capsule determines disease severity in experimental pneumococcal meningitis. Open Biol. 2016;6(3): 150269.
Article PubMed PubMed Central Google Scholar
Jim KK, Engelen-Lee J, van der Sar AM, Bitter W, Brouwer MC, Van der Ende A, Veening JW, Van de Beek D, Vandenbroucke-Grauls CM. Infection of zebrafish embryos with live fluorescent Streptococcus pneumoniae as a real-time pneumococcal meningitis model. J Neuroinflammation. 2016;13:188.
Article PubMed PubMed Central Google Scholar
Jim KK, Aprianto R, Koning R, Domenech A, Kurushima J, Van de Beek D, Vandenbroucke-Grauls CMJE, Bitter W, Veening JW. Pneumolysin promotes host cell necroptosis and bacterial competence during pneumococcal meningitis as shown by whole-animal dual RNA-seq. Cell Rep. 2022;41: 111851.
Article CAS PubMed PubMed Central Google Scholar
Renshaw SA, Loynes CA, Trushell DM, Elworthy S, Ingham PW, Whyte MK. A transgenic zebrafish model of neutrophilic inflammation. Blood. 2006;108:3976–8.
Article CAS PubMed Google Scholar
Benard EL, van der Sar AM, Ellett F, Lieschke GJ, Spaink HP, Meijer AH. Infection of zebrafish embryos with intracellular bacterial pathogens. J Vis Exp. 2012;15(61):3781.
Ando K, Fukuhara S, Izumi N, Nakajima H, Fukui H, Kelsh RN, Mochizuki N. Clarification of mural cell coverage of vascular endothelial cells by live imaging of zebrafish. Development. 2016;143:1328–39.
CAS PubMed PubMed Central Google Scholar
Malipiero U, Koedel U, Pfister HW, Leveen P, Bürki K, Reith W, Fontana A. TGF receptor II gene deletion in leukocytes prevents cerebral vasculitis in bacterial meningitis. Brain. 2006;129:2404–15.
Woehrl B, Brouwer MC, Murr C, Heckenberg SG, Baas F, Pfister HW, Zwinderman AH, Morgan BP, Barnum SR, van der Ende A, Koedel U. Complement component 5 contributes to poor disease outcome in humans and mice with pneumococcal meningitis. J Clin Invest. 2011;121:3943–53.
Comments (0)