Spatially distinct molecular patterns of gene expression in idiopathic pulmonary fibrosis

Olson AL, Swigris JJ, Lezotte DC, Norris JM, Wilson CG, Brown KK. Mortality from pulmonary fibrosis increased in the United States from 1992 to 2003. Am J Respir Crit Care Med. 2007;176(3):277–84.

Article  PubMed  Google Scholar 

Lederer DJ, Martinez FJ. Idiopathic pulmonary fibrosis. N Engl J Med. 2018;378(19):1811–23.

Article  CAS  PubMed  Google Scholar 

Navaratnam V, Fleming KM, West J, Smith CJP, Jenkins RG, Fogarty A, et al. The rising incidence of idiopathic pulmonary fibrosis in the U.K. Thorax. 2011;66(6):462–7.

Article  CAS  PubMed  Google Scholar 

Hunninghake GM, Hatabu H, Okajima Y, Gao W, Dupuis J, Latourelle JC, et al. MUC5B promoter polymorphism and interstitial lung abnormalities. N Engl J Med. 2013;368(23):2192–200.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Putman RK, Hatabu H, Araki T, Gudmundsson G, Gao W, Nishino M, et al. Association between interstitial lung abnormalities and all-cause mortality. JAMA. 2016;315(7):672–81.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Richeldi L, Collard HR, Jones MG. Idiopathic pulmonary fibrosis. Lancet. 2017;389(10082):1941–52.

Article  PubMed  Google Scholar 

Raghu G, Remy-Jardin M, Myers JL, Richeldi L, Ryerson CJ, Lederer DJ, et al. Diagnosis of idiopathic pulmonary fibrosis. an official ATS/ERS/JRS/ALAT clinical practice guideline. Am J Respir Crit Care Med. 2018;198(5):e44-68.

Article  PubMed  Google Scholar 

Ikezoe K, Hackett T-L, Peterson S, Prins D, Hague CJ, Murphy D, et al. Small Airway reduction and fibrosis is an early pathologic feature of Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med. 2021;204(9):1048–59.

Article  PubMed  Google Scholar 

Stancil IT, Michalski JE, Hennessy CE, Hatakka KL, Yang IV, Kurche JS, et al. Interleukin-6–dependent epithelial fluidization initiates fibrotic lung remodeling. Sci Transl Med. 2022;14(654):eabo5254.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaminski N. Microarray analysis of idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol. 2003;29(3 Suppl):32–6.

Google Scholar 

Konishi K, Gibson KF, Lindell KO, Richards TJ, Zhang Y, Dhir R, et al. Gene expression profiles of acute exacerbations of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2009;180(2):167–75.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Selman M, Carrillo G, Estrada A, Mejia M, Becerril C, Cisneros J, et al. Accelerated variant of idiopathic pulmonary fibrosis: clinical behavior and gene expression pattern. PLoS One. 2007;2(5):e482.

Selman M, Pardo A, Barrera L, Estrada A, Watson SR, Wilson K, et al. Gene expression profiles distinguish Idiopathic Pulmonary Fibrosis from Hypersensitivity Pneumonitis. Am J Respir Crit Care Med. 2006;173(2):188–98.

Article  CAS  PubMed  Google Scholar 

Zuo F, Kaminski N, Eugui E, Allard J, Yakhini Z, Ben-Dor A, et al. Gene expression analysis reveals matrilysin as a key regulator of pulmonary fibrosis in mice and humans. Proc Natl Acad Sci U S A. 2002;99(9):6292–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boon K, Bailey NW, Yang J, Steel MP, Groshong S, Kervitsky D, et al. Molecular phenotypes distinguish patients with relatively stable from Progressive Idiopathic Pulmonary Fibrosis (IPF). PLoS ONE. 2009;4(4):e5134.

Article  PubMed  PubMed Central  Google Scholar 

Yang IV, Coldren CD, Leach SM, Seibold MA, Murphy E, Lin J, et al. Expression of cilium-associated genes defines novel molecular subtypes of Idiopathic Pulmonary Fibrosis. Thorax. 2013;68(12):1114–21.

Article  PubMed  Google Scholar 

Yang IV, Burch LH, Steele MP, Savov JD, Hollingsworth JW, McElvania-Tekippe E, et al. Gene expression profiling of familial and sporadic interstitial Pneumonia. Am J Respir Crit Care Med. 2007;175(1):45–54.

Article  CAS  PubMed  Google Scholar 

Adams TS, Schupp JC, Poli S, Ayaub EA, Neumark N, Ahangari F, et al. Single-cell RNA-seq reveals ectopic and aberrant lung-resident cell populations in Idiopathic Pulmonary Fibrosis. Sci Adv. 2020;6(28):eaba1983.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Habermann AC, Gutierrez AJ, Bui LT, Yahn SL, Winters NI, Calvi CL, et al. Single-cell RNA sequencing reveals profibrotic roles of distinct epithelial and mesenchymal lineages in pulmonary fibrosis. Sci Adv. 2020;6(28):eaba1972.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carraro G, Mulay A, Yao C, Mizuno T, Konda B, Petrov M, et al. Single-cell reconstruction of human basal cell diversity in normal and Idiopathic Pulmonary Fibrosis lungs. Am J Respir Crit Care Med. 2020;202(11):1540–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reyfman PA, Walter JM, Joshi N, Anekalla KR, McQuattie-Pimentel AC, Chiu S, et al. Single-cell transcriptomic analysis of human lung provides insights into the pathobiology of pulmonary fibrosis. Am J Respir Crit Care Med. 2019;199(12):1517–36.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McDonough JE, Ahangari F, Li Q, Jain S, Verleden SE, Herazo-Maya J, et al. Transcriptional regulatory model of fibrosis progression in the human lung. JCI insight. 2019;4(22):385.

Article  Google Scholar 

Eyres M, Bell JA, Davies ER, Fabre A, Alzetani A, Jogai S, et al. Spatially resolved deconvolution of the fibrotic niche in lung fibrosis. Cell Rep. 2022;40(7):111230.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Danaher P, Kim Y, Nelson B, Griswold M, Yang Z, Piazza E, et al. Advances in mixed cell deconvolution enable quantification of cell types in spatial transcriptomic data. Nat Commun. 2022;13(1):385.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krämer A, Green J, Pollard J, Tugendreich S. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics. 2014;30(4):523–30.

Article  PubMed  Google Scholar 

Zhou G, Soufan O, Ewald J, Hancock REW, Basu N, Xia J. NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res. 2019;47(W1):W234–41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Merritt CR, Ong GT, Church SE, Barker K, Danaher P, Geiss G, et al. Multiplex digital spatial profiling of proteins and RNA in fixed tissue, vol. 38. United States; 2020. p. 586–99.

Google Scholar 

Ortogero N, Yang Z. GeomxTools: NanoString GeoMx Tools. 2021.

Reeves J, Divakar P, Ortogero N, Griswold M, Yang Z, Zimmerman S et al. GeoMxWorkflows: GeoMx Digital Spatial Profiler (DSP) data analysis workflows. 2022.

Aboyoun P. NanoStringNCTools: NanoString nCounter Tools. 2022.

R Core Team. R: a Language and Environment for Statistical Computing. Vienna: Austria; 2021.

Google Scholar 

Vestal B, lmerSeq. Wrappers for fitting linear mixed models to RNA-Seq Data. 2022.

Madissoon E, Wilbrey-Clark A, Miragaia RJ, Saeb-Parsy K, Mahbubani KT, Georgakopoulos N, et al. scRNA-seq assessment of the human lung, spleen, and esophagus tissue stability after cold preservation. Genome Biol. 2019;21(1):1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kulkarni T, de Andrade J, Zhou Y, Luckhardt T, Thannickal VJ. Alveolar epithelial disintegrity in pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 2016;311(2):L185–91.

Article  PubMed  PubMed Central  Google Scholar 

Brereton CJ, Yao L, Davies ER, Zhou Y, Vukmirovic M, Bell JA, et al. Pseudohypoxic HIF pathway activation dysregulates collagen structure-function in human lung fibrosis. Elife. 2022;11:e69348.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reed NI, Jo H, Chen C, Tsujino K, Arnold TD, DeGrado WF, et al. The αvβ1 integrin plays a critical in vivo role in tissue fibrosis. Sci Transl Med. 2015;7(288):288ra79.

Article  PubMed  PubMed Central  Google Scholar 

Brugarolas J, Lei K, Hurley RL, Manning BD, Reiling JH, Hafen E, et al. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 Tumor suppressor complex. Genes Dev. 2004;18(23):2893–904.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dobrinskikh E, Hennessy CE, Kurche JS, Kim E, Estrella AM, Cardwell J, et al. Epithelial endoplasmic reticulum stress enhances the risk of Muc5b-associated lung fibrosis. Am J Respir Cell Mol Biol. 2023;68(1):62–74.

Article  CAS  PubMed  Google Scholar 

Strunz M, Simon LM, Ansari M, Kathiriya JJ, Angelidis I, Mayr CH, et al. Alveolar regeneration through a Krt8 + transitional stem cell state that persists in human lung fibrosis. Nat Commun. 2020;11(1):3559.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Russell REK, Sc B, Ph D. Ineffectual type 2 to type 1 alveolar epithelial cell differentiation in Idiopathic pulmonary fibrosis: persistence of the KRT8hi transitional state. Am J Respir Crit Care Med. 2020;201(11):1443–7.

Article  Google Scholar 

Comments (0)

No login
gif