Wanders RJA, Vaz FM, Ferdinandusse S, Kemp S, Ebberink MS, Waterham HR. Laboratory diagnosis of peroxisomal disorders in the -omics era and the continued importance of biomarkers and biochemical studies. J Inborn Errors Metab Screen. 2018;6:232640981881028. https://doi.org/10.1177/2326409818810285.
Fourcade S, Ferrer I, Pujol A. Oxidative stress, mitochondrial and proteostasis malfunction in adrenoleukodystrophy: a paradigm for axonal degeneration. Free Radic Biol Med. 2015;88:18–29. https://doi.org/10.1016/j.freeradbiomed.2015.05.041.
Article CAS PubMed Google Scholar
Kawada Y, Khan M, Sharma AK, Ratnayake DB, Dobashi K, Asayama K, Moser HW, Contreras MA, Singh I. Inhibition of peroxisomal functions due to oxidative imbalance induced by mistargeting of catalase to cytoplasm is restored by vitamin E treatment in skin fibroblasts from zellweger syndrome-like patients. Mol Genet Metab. 2004;83(4):297–305. https://doi.org/10.1016/j.ymgme.2004.07.012.
Article CAS PubMed Google Scholar
Argyriou C, D’Agostino MD, Braverman N. Peroxisome biogenesis disorders. Transl Sci Rare Dis. 2016;1(2):111–44. https://doi.org/10.3233/TRD-160003.
Article PubMed PubMed Central Google Scholar
Elumalai V, Pasrija D. Zellweger Syndrome. 2023 Feb 15. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan
Crane DI. Revisiting the neuropathogenesis of Zellweger syndrome. Neurochem Int. 2014;69:1–8. https://doi.org/10.1016/j.neuint.2014.02.007.
Article CAS PubMed Google Scholar
Faust PL, Banka D, Siriratsivawong R, Ng VG, Wikander TM. Peroxisome biogenesis disorders: the role of peroxisomes and metabolic dysfunction in developing brain. J Inherit Metab Dis. 2005;28(3):369–83. https://doi.org/10.1007/s10545-005-7059-y.
Article CAS PubMed Google Scholar
Moser HW, Mahmood A, Raymond GV. X-linked adrenoleukodystrophy. Nat Clin Pract Neurol. 2007;3(3):140–51. https://doi.org/10.1038/ncpneuro0421.
Kemp S, Wanders R. Biochemical aspects of X-linked adrenoleukodystrophy: biochemical aspects of X-ALD. Brain Pathol. 2009;20(4):831–7. https://doi.org/10.1111/j.1750-3639.2010.00391.x.
Engelen M, van Ballegoij WJC, Mallack EJ, Van Haren KP, Köhler W, Salsano E, van Trotsenburg ASP, Mochel F, Sevin C, Regelman MO, Tritos NA, Halper A, Lachmann RH, Davison J, Raymond GV, Lund T, Orchard PJ, Kuehl J-S, Lindemans CA, Caruso P, Turk BR, Moser AB, Vaz FM, Ferdinandusse S, Kemp S, Fatemi A, Eichler FS, Huffnagel IC. International recommendations for the diagnosis and management of patients with adrenoleukodystrophy: a consensus-based approach. Neurology. 2022. https://doi.org/10.1212/WNL.0000000000201374.
Article PubMed PubMed Central Google Scholar
Jaspers YRJ, Ferdinandusse S, Dijkstra IME, Barendsen RW, van Lenthe H, Kulik W, Engelen M, Goorden SMI, Vaz FM, Kemp S. Comparison of the diagnostic performance of C26:0-lysophosphatidylcholine and very long-chain fatty acids analysis for peroxisomal disorders. Front Cell Dev Biol. 2020;29(8):690. https://doi.org/10.3389/Fcell.2020.00690.PMID:32903870;PMCID:PMC7438929.
Braverman NE, Raymond GV, Rizzo WB, Moser AB, Wilkinson ME, Stone EM, Steinberg SJ, Wangler MF, Rush ET, Hacia JG, Bose M. Peroxisome biogenesis disorders in the zellweger spectrum: an overview of current diagnosis, clinical manifestations, and treatment guidelines. Mol Genet Metab. 2016;117(3):313–21. https://doi.org/10.1016/j.ymgme.2015.12.009.
Article CAS PubMed Google Scholar
Moser AB, Liu Y, Shi X, Schrifl U, Hiebler S, Fatemi A, Braverman NE, Steinberg SJ, Watkins PA. Drug discovery for X-linked adrenoleukodystrophy: an unbiased screen for compounds that lower very long-chain fatty acids. J Cell Biochem. 2021;122(10):1337–49. https://doi.org/10.1002/jcb.30014.
Article CAS PubMed PubMed Central Google Scholar
Eichler F, Duncan C, Musolino PL, Orchard PJ, De Oliveira S, Thrasher AJ, et al. Hematopoietic stem-cell gene therapy for cerebral adrenoleukodystrophy. N Engl J Med. 2017;377(17):1630–8. https://doi.org/10.1056/NEJMoa1700554.
Article CAS PubMed PubMed Central Google Scholar
Tran C, Patel J, Stacy H, Mamak EG, Faghfoury H, Raiman J, Clarke JTR, Blaser S, Mercimek-Mahmutoglu S. Long-term outcome of patients with X-linked adrenoleukodystrophy: a retrospective cohort study. Eur J Paediatr Neurol. 2017;21(4):600–9. https://doi.org/10.1016/j.ejpn.2017.02.006.
Rockenbach FJ, Deon M, Marchese DP, Manfredini V, Mescka C, Ribas GS, Habekost CT, Castro CG, Jardim LB, Vargas CR. The effect of bone marrow transplantation on oxidative stress in x-linked adrenoleukodystrophy. Mol Genet Metab. 2012;106(2):231–6. https://doi.org/10.1016/j.ymgme.2012.03.019.
Article CAS PubMed Google Scholar
Petrillo S, D’Amico J, Nicita F, Torda C, Vasco G, Bertini ES, Cappa M, Piemonte F. Antioxidant response in human X-linked adrenoleukodystrophy fibroblasts. Antioxidants. 2022;11(11):2125. https://doi.org/10.3390/antiox11112125.
Article CAS PubMed PubMed Central Google Scholar
Ivashchenko O, Van Veldhoven PP, Brees C, Ho Y-S, Terlecky SR, Fransen M. Intraperoxisomal redox balance in mammalian cells: oxidative stress and interorganellar cross-talk. Mol Biol Cell. 2011;22(9):1440–51. https://doi.org/10.1091/mbc.e10-11-0919.
Article CAS PubMed PubMed Central Google Scholar
Berger J, Dorninger F, Forss-Petter S, Kunze M. Peroxisomes in brain development and function. Biochim Biophys Acta. 2016;1863(5):934–55. https://doi.org/10.1016/j.bbamcr.2015.12.005.
Article CAS PubMed Google Scholar
Schrader M, Fahimi HD. Peroxisomes and oxidative stress. Biochim Biophys Acta. 2006;1763(12):1755–66. https://doi.org/10.1016/j.bbamcr.2006.09.006.
Article CAS PubMed Google Scholar
Fourcade S, Lopez-Erauskin J, Galino J, Duval C, Naudi A, Jove M, Kemp S, Villarroya F, Ferrer I, Pamplona R, Portero-Otin M, Pujol A. Early oxidative damage underlying neurodegeneration in X-adrenoleukodystrophy. Hum Mol Genet. 2008;17(12):1762–73. https://doi.org/10.1093/hmg/ddn085.
Article CAS PubMed Google Scholar
Rahim RS, Chen M, Nourse CC, Meedeniya ACB, Crane DI. Mitochondrial changes and oxidative stress in a mouse model of zellweger syndrome neuropathogenesis. Neuroscience. 2016;334:201–13. https://doi.org/10.1016/j.neuroscience.2016.08.001.
Article CAS PubMed Google Scholar
Yu J, Chen T, Guo X, Zafar MI, Li H, Wang Z, Zheng J. The role of oxidative stress and inflammation in X-link adrenoleukodystrophy. Front Nutr. 2022;9:864358. https://doi.org/10.3389/fnut.2022.864358.
Article CAS PubMed PubMed Central Google Scholar
Mizushima N, Yoshimori T. How to interpret LC3 immunoblotting. Autophagy. 2007;3(6):542–5. https://doi.org/10.4161/auto.4600.
Article CAS PubMed Google Scholar
Falcicchia C, Tozzi F, Arancio O, Watterson DM, Origlia N. Involvement of P38 MAPK in synaptic function and dysfunction. Int J Mol Sci. 2020;21(16):5624. https://doi.org/10.3390/ijms21165624.
Article CAS PubMed PubMed Central Google Scholar
Son Y, Cheong Y-K, Kim N-H, Chung H-T, Kang DG, Pae H-O. Mitogen-activated protein kinases and reactive oxygen species: How can ROS activate MAPK pathways? J Signal Transduct. 2011;2011:1–6. https://doi.org/10.1155/2011/792639.
López-Erauskin J, Galino J, Ruiz M, Cuezva JM, Fabregat I, Cacabelos D, Boada J, Martínez J, Ferrer I, Pamplona R, Villarroya F, Portero-Otín M, Fourcade S, Pujol A. Impaired mitochondrial oxidative phosphorylation in the peroxisomal disease X-linked adrenoleukodystrophy. Hum Mol Genet. 2013;22(16):3296–305. https://doi.org/10.1093/hmg/ddt186.
Article CAS PubMed Google Scholar
Cho DH, Kim YS, Jo DS, Choe SK, Jo EK. Pexophagy: molecular mechanisms and implications for health and diseases. Mol Cells. 2018;41(1):55–64. https://doi.org/10.14348/molcells.2018.2245.
Article CAS PubMed PubMed Central Google Scholar
Launay N, Aguado C, Fourcade S, Ruiz M, Grau L, Riera J, Guilera C, Giròs M, Ferrer I, Knecht E, Pujol A. Autophagy induction halts axonal degeneration in a mouse model of X-adrenoleukodystrophy. Acta Neuropathol. 2015;129(3):399–415. https://doi.org/10.1007/s00401-014-1378-8.
Wu JJ, Quijano C, Chen E, Liu H, Cao L, Fergusson MM, Rovira II, Gutkind S, Daniels MP, Komatsu M, Finkel T. Mitochondrial dysfunction and oxidative stress mediate the physiological impairment induced by the disruption of autophagy. Aging. 2009;1(4):425–37. https://doi.org/10.18632/aging.100038.
Article CAS PubMed PubMed Central Google Scholar
Li H, Lismont C, Revenco I, Hussein MAF, Costa CF, Fransen M. The peroxisome-autophagy redox connection: a double-edged sword? Front Cell Dev Biol. 2021;9:814047. https://doi.org/10.3389/fcell.2021.814047.
Article PubMed PubMed Central Google Scholar
Lismont C, Nordgren M, Brees C, Knoops B, Van Veldhoven PP, Fransen M. Peroxisomes as modulators of cellular protein thiol oxidation: a new model system. Antioxid Redox Signal. 2019;30(1):22–39. https://doi.org/10.1089/ars.2017.6997.
Comments (0)