Nagelkerken I, Munday PL. Animal behaviour shapes the ecological effects of ocean acidification and warming: moving from individual to community-level responses. Glob Chang Biol. 2016;22(3):974–89.
Nagelkerken I, Goldenberg SU, Coni EOC, Connell SD. Microhabitat change alters abundances of competing species and decreases species richness under ocean acidification. Sci Total Environ. 2018;645:615–22. https://doi.org/10.1016/j.scitotenv.2018.07.168.
Article PubMed CAS Google Scholar
Burrows MT, Bates AE, Costello MJ, Edwards M, Edgar GJ, Fox CJ, et al. Ocean community warming responses explained by thermal affinities and temperature gradients. Nat Clim Chang. 2019;9(12):959–63.
Milazzo M, Mirto S, Domenici P, Gristina M. Climate change exacerbates interspecific interactions in sympatric coastal fishes. J Anim Ecol. 2013;82(2):468–77.
Clements JCJ, Hunt HLH. Marine animal behaviour in a high CO2 ocean. Mar Ecol Prog Ser. 2015;536:259–79.
Santos CP, Sampaio E, Pereira BP, Pegado MR, Borges FO, Wheeler CR, et al. Elasmobranch responses to experimental warming, acidification, and oxygen loss— A meta-analysis. Front Mar Sci. 2021;8:735377.
Rosa R, Rummer JL, Munday PL. Biological responses of sharks to ocean acidification. Biol Lett. 2017;13(3). https://royalsocietypublishing.org/doi/10.1098/rsbl.2016.0796.
Demin KA, Lakstygal AM, Alekseeva PA, Sysoev M, de Abreu MS, Alpyshov ET, et al. The role of intraspecies variation in fish neurobehavioral and neuropharmacological phenotypes in aquatic models. Aquat Toxicol. 2019;210:44–55.
Article PubMed CAS Google Scholar
Paula J, Baptista M, Carvalho F, Repolho T, Bshary R, Rosa R. The past, present and future of cleaner fish cognitive performance as a function of CO2 levels. Biol Lett. 2019;15:10–4. https://doi.org/10.1098/rsbl.2019.0618.
Kang J, Nagelkerken I, Rummer JL, Rodolfo-Metalpa R, Munday P, et al. Rapid evolution fuels transcriptional plasticity to ocean acidification. Glob Change Biol. 2022;28:3007–22.
Munday PL, Jarrold MD, Nagelkerken I. Ecological effects of elevated CO2 on marine and freshwater fishes: From individual to community effects. In: Grosell M, Munday P, Farrell A, Brauner C, editors. 1st ed. Cambridge: Academic Press Elsevier Inc.; 2019. p. 323–68.
Schunter C, Ravasi T, Munday PL, Nilsson GE. Neural effects of elevated CO2 in fish may be amplified by a vicious cycle. Conserv Physiol. 2019;7(1):coz100. https://doi.org/10.1093/conphys/coz100.
Article PubMed PubMed Central CAS Google Scholar
Porteus CS, Hubbard PC, Uren Webster TM, van Aerle R, Canário AVM, Santos EM, et al. Near-future CO2 levels impair the olfactory system of a marine fish. Nat Clim Chang. 2018;8(8):737–43.
Williams CR, Dittman AH, McElhany P, Shallin Busch D, Maher MT, Bammler TK, et al. Elevated CO2 impairs olfactory-mediated neural and behavioral responses and gene expression in ocean-phase coho salmon (Oncorhynchus kisutch). Glob Chang Biol. 2018;25(3):963–77. https://onlinelibrary.wiley.com/doi/10.1111/gcb.14532.
Article PubMed PubMed Central Google Scholar
Esbaugh AJ. Physiological implications of ocean acidification for marine fish: emerging patterns and new insights. J Comp Physiol B. 2018;188:1–13.
Article PubMed CAS Google Scholar
Heuer RM, Grosell M. Physiological impacts of elevated carbon dioxide and ocean acidification on fish. Am J Physiol Regul Integr Comp Physiol. 2014;307:1061–84.
Velez Z, Roggatz Christina C, Benoit David M, Hardege Jörg D, Hubbard Peter C. Short-and medium-term exposure to ocean acidification reduces olfactory sensitivity in gilthead seabream. Front Physiol. 2019;1:731.
Payne NL, Smith JA, van der Meulen DE, Taylor MD, Watanabe YY, Takahashi A, et al. Temperature dependence of fish performance in the wild: Links with species biogeography and physiological thermal tolerance. Funct Ecol. 2016;30(6):903–12.
Bernal MA, Schunter C, Lehmann R, Lightfoot DJ, Allan BJM, Veilleux HD, et al. Species-specific molecular responses of wild coral reef fishes during a marine heatwave. Sci Adv. 2020;6(12):3423–41.
Somero GN. The cellular stress response and temperature: Function, regulation, and evolution. J Exp Zool A Ecol Integr Physiol. 2020;333:379–97. John Wiley & Sons, Ltd.
Article PubMed CAS Google Scholar
LeBlanc S, Middleton S, Gilmour KM, Currie S. Chronic social stress impairs thermal tolerance in the rainbow trout (Oncorhynchus mykiss). J Exp Biol. 2011;214(Pt 10):1721–31.
Rendell JL, Fowler S, Cockshutt A, Currie S. Development-dependent differences in intracellular localization of stress proteins (HSPS) in rainbow trout, Oncorhynchus mykiss, following heat shock. Comp Biochem Physiol Part D Genomics Proteomics. 2006;1(2):238–52.
Samaras A, Papandroulakis N, Lika K, Pavlidis M. Water temperature modifies the acute stress response of European sea bass, Dicentrarchus labrax L. (1758). J Therm Biol. 2018;78:84–91.
Tomalty KMH, Meek MH, Stephens MR, Rincón G, Fangue NA, May BP, et al. Transcriptional response to acute thermal exposure in juvenile chinook salmon determined by RNAseq. G3 (Bethesda). 2015;5(7):1335–49.
Article PubMed PubMed Central CAS Google Scholar
Pörtner HO, Farrell A. Physiology and climate change. Science (1979). 2008;322(5902):690–2.
Biro PA, Beckmann C, Stamps JA. Small within-day increases in temperature affects boldness and alters personality in coral reef fish. Proc R Soc Lond B Biol Sci. 2010;277(1678):71–7.
Allan BJM, Domenici P, Watson SA, Munday PL, McCormick MI. Warming has a greater effect than elevated CO2 on predator–prey. Proc R Soc Lond B Biol Sci. 1857;2017(284):20170784.
Rosa R, Baptista M, Lopes VM, Pegado MR, Paula JR, Trübenbach K, et al. Early-life exposure to climate change impairs tropical shark survival. Proc R Soc Lond B Biol Sci. 2014;281(1793):20141738. https://royalsocietypublishing.org/doi/10.1098/rspb.2014.1738.
Ferrari MCO, Munday PL, Rummer JL, Mccormick MI, Corkill K, Watson SA, et al. Interactive effects of ocean acidification and rising sea temperatures alter predation rate and predator selectivity in reef fish communities. Glob Chang Biol. 2015;21(5):1848–55.
Nowicki JP, Miller GM, Munday PL. Interactive effects of elevated temperature and CO2 on foraging behavior of juvenile coral reef fish. J Exp Mar Biol Ecol. 2012;412:46–51.
Paula J, Repolho T, Pegado MR, Thörnqvist PO, Bispo R, Winberg S, et al. Neurobiological and behavioural responses of cleaning mutualisms to ocean warming and acidification. Sci Rep. 2019;9(12728):1–10.
Paula J, Cascalheira L, Oliveira R, Otjacques E, Frazão-Santos C, Beldade R, et al. GABAergic role in the disruption of wild cleaner fish behaviour under high CO2. Anim Behav. 2023;195:77–84.
Paula JR, Repolho T, Grutter AS, Rosa R. Access to cleaning services alters fish physiology under parasite infection and ocean acidification. Front Physiol. 2022;13:859556.
Article PubMed PubMed Central Google Scholar
Triki Z, Wismer S, Levorato E, Bshary R. A decrease in the abundance and strategic sophistication of cleaner fish after environmental perturbations. Glob Chang Biol. 2018;24(1):481–9. http://doi.wiley.com/10.1111/gcb.13943.
Grutter AS. Cleaner fish really do clean. Nature. 1999;398(6729):672–3.
Bshary R, Côté IM. New perspectives on marine cleaning mutualism. In: Magnhagen C, Braithwaite V, Forsgren E, Kapoor BG, editors. 1st Ed. Florida: CRC Press; 2008. p. 563–92.
Waldie PA, Blomberg SP, Cheney KL, Goldizen AW, Grutter AS. Long-term effects of the cleaner fish Labroides dimidiatus on coral reef fish communities. PLoS One. 2011;6(6):e21201.
Article PubMed PubMed Central CAS Google Scholar
Kohda M, Hotta T, Takeyama T, Awata S, Tanaka H, Asai JY, et al. If a fish can pass the mark test, what are the implications for consciousness and self-awareness testing in animals? Plos Biology. 2019;17(2):e3000021. https://doi.org/10.1371/journal.pbio.3000021.
Soares M, Oliveira RF, Ros AFH, Grutter AS, Bshary R. Tactile stimulation lowers stress in fish. Nat Commun. 2011;2(1):534–5.
Ros AFH, Lusa J, Meyer M, Soares M, Oliveira RF, Brossard M, et al. Does access to the bluestreak cleaner wrasse Labroides dimidiatus affect indicators of stress and health in resident reef fishes in the Red Sea? Horm Behav. 2011;59(1):151–8.
Toby Kiers E, Palmer TM, Ives AR, Bruno JF, Bronstein JL. Mutualisms in a changing world: an evolutionary perspective. Ecol Lett. 2010;13(12):1459-74.42.
Article PubMed CAS Google Scholar
Waldie PA, Blomberg SP, Cheney KL, Goldizen AW, Grutter AS. Long-term effects of the cleaner fish Labroides dimidiatus on coral reef fish communities. PLoS One. 2011;6(6):99–114.
Tebbich S, Bshary R, Grutter A. Cleaner fish Labroides dimidiatus recognise familiar clients. Anim Cogn. 2002;5(3):139–45.
Article PubMed CAS Google Scholar
Soares M. The Neurobiology of Mutualistic Behavior: The Cleanerfish swims into the Spotlight. Front Behav Neurosci. 2017;11(October):1–12.
Grutter AS, Bshary R. Cleaner wrasse prefer client mucus: Support for partner control mechanisms in cleaning interactions. Proc R Soc Lond B Biol Sci. 2003;270((suppl_2)):S242-4.
Soares M, Bshary R, Fusani L, Goymann W, Hau M, Hirschenhauser K, et al. Hormonal mechanisms of cooperative behaviour. Phil Trans R Soc B. 2010;365(1553):2737–50.
Comments (0)