Detection of soybean mildew infection at early stage based on optical coherence tomography and deep learning methods

Messina, M.: Legumes and soybeans: overview of their nutritional profiles and health effects. Am. J. Clin. Nutr. 70, 439–450 (1999)

Article  Google Scholar 

Anttila, A., Bhat, R.V., Bond, J.A.: IARC monographs on the evaluation of carcinogenic risks to humans: some traditional herbal medicines, some mycotoxins, naphthalene and styrene. IARC Monogr. Eval. Carcinog. Risks Hum. 82, 1–556 (2002)

Google Scholar 

Wogan, G.N.: Impacts of chemicals on liver cancer risk. Semin. Cancer Biol. 10, 201–210 (2000)

Article  Google Scholar 

Bhattacharya, K., Raha, S.: Deteriorative changes of maize, groundnut and soybean seeds by fungi in storage. Mycopathologia 155, 135–141 (2002)

Article  Google Scholar 

Zhao, Z., Zhi-feng, Y., Peng, W., Bao-feng, S., Bin, L., Huai-bo, S., Dong-jian, H., Yan, X., Jian-bo, H.: Early detection of Plasmopara viticola infection in grapevine leaves using chlorophyll fluorescence imaging. Spectrosc. Spectr. Anal. 42, 1028–1035 (2022)

Google Scholar 

Li, M., Landahl, S., East, A.R., Verboven, P., Terry, L.A.: Optical coherence tomography—a review of the opportunities and challenges for postharvest quality evaluation. Postharvest Biol. Technol. 150, 9–18 (2019)

Article  Google Scholar 

Saleah, S.A., Lee, S., Wijesinghe, R.E., Lee, J., Seong, D., Ravichandran, N.K., Jung, H., Jeon, M., Kim, J.: Optical signal intensity incorporated rice seed cultivar classification using optical coherence tomography. Comput. Electron. Agric. 198, 107014 (2022)

Article  Google Scholar 

Bharti, T., Yoon, S., Lee, B.H.: Identification of fungus-infected tomato seeds based on full-field optical coherence tomography. Curr. Opt. Photonics 3, 571–576 (2019)

Google Scholar 

Li, M., Rivera, S., Franklin, D., Nowak, E., Hallett, L., Kolenderska, S., Urbańska, M., Vanholsbeeck, F., East, A.: Use of optical coherence tomography and light microscopy for characterisation of mechanical properties and cellular level responses of ‘Centurion’ blueberries during weight loss. J. Food Eng. 303, 110596 (2021)

Article  Google Scholar 

Zhou, Y., Wu, Y., Chen, Z.: Early detection of mold-contaminated maize kernels based on optical coherence tomography. Food Anal. Methods 15, 1619–1625 (2022)

Article  Google Scholar 

Patil, J.K., Kumar, R.: Analysis of content based image retrieval for plant leaf diseases using color, shape and texture features. Eng. Agric. Environ. Food. 10, 69–78 (2017)

Article  Google Scholar 

Archana, K.S., Srinivasan, S., Bharathi, S.P., et al.: A novel method to improve computational and classification performance of rice plant disease identification. J. Supercomput. 78, 8925–8945 (2022)

Article  Google Scholar 

Ansari, A.S., Jawarneh, M., Ritonga, M., Jamwal, P., Mohammadi, M.S., Veluri, R.K., Kumar, V., Shah, M.A.: Improved support vector machine and image processing enabled methodology for detection and classification of grape leaf disease. J. Food Qual. 2022, 1–6 (2022)

Article  Google Scholar 

Wang, L., He, Z., Meng, B., et al.: Two-pathway attention network for real-time facial expression recognition. J. Real-Time Image Proc. 18, 1173–1182 (2021)

Article  Google Scholar 

Purohit, N., Panwar, S.: Dual-pathway deep CNN for offline writer identification. In: International Conference on Deep Learning. Artificial Intelligence and Robotics, pp. 119–127. ICDLAIR, Italy (2022)

Buades, A., Coll, B., Morel, J.: A non-local algorithm for image denoising. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 60–65. IEEE, San Diego (2005)

He, J., Chen, J., Liu, S., Kortylewski, A., Yang, C., Bai, Y., Wang, C.: Transfg: a transformer architecture for fine-grained recognition. In: Association for the Advancement of Artificial Intelligence, pp. 852–860. AAAI, Vancouver (2022)

He, S., Grant, P.E., Ou, Y.: Global-local transformer for brain age estimation. IEEE Trans. Med. Imaging 41, 213–224 (2021)

Article  Google Scholar 

Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations, pp. 1–14. ICLR, San Diego (2015)

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778. IEEE, Las Vegas (2016)

Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: Proceedings of Machine Learning Research, pp. 6105–6114. PMLR, Long Beach (2019)

Szegedy, C., Vanhoucke, V., Loffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826. IEEE, Las Vegas (2016)

Comments (0)

No login
gif