New clinical opportunities of low-field MRI: heart, lung, body, and musculoskeletal

Ladd ME, Bachert P, Meyerspeer M, Moser E, Nagel AM, Norris DG et al (2018) Pros and cons of ultra-high-field MRI/MRS for human application. Prog Nucl Magn Reson Spectrosc 109:1–50

Article  CAS  PubMed  Google Scholar 

Farahani K, Sinha U, Sinha S, Chiu LC, Lufkin RB (1990) Effect of field strength on susceptibility artifacts in magnetic resonance imaging. Comput Med Imaging Graph 14(6):409–413

Article  CAS  PubMed  Google Scholar 

Ho HS (2001) Safety of metallic implants in magnetic resonance imaging. J Magn Reson Imaging 14(4):472–477

Article  CAS  PubMed  Google Scholar 

Hori M, Hagiwara A, Goto M, Wada A, Aoki S (2021) Low-field magnetic resonance imaging: its history and renaissance. Invest Radiol 56(11):669–679

Article  PubMed  PubMed Central  Google Scholar 

Graves MJ (2022) 3 T: the good, the bad and the ugly. Br J Radiol 95(1130):20210708

Article  PubMed  Google Scholar 

Arnold TC, Freeman CW, Litt B, Stein JM (2023) Low-field MRI: clinical promise and challenges. J Magn Reson Imaging 57(1):25–44

Article  PubMed  Google Scholar 

Rusche T, Vosshenrich J, Winkel DJ, Donners R, Segeroth M, Bach M et al (2022) More space, less noise-new-generation low-field magnetic resonance imaging systems can improve patient comfort: a prospective 0.55T–1.5T-scanner comparison. J Clin Med 11(22):6705

Article  PubMed  PubMed Central  Google Scholar 

Vosshenrich J, Breit HC, Bach M, Merkle EM (2022) Economic aspects of low-field magnetic resonance imaging: acquisition, installation, and maintenance costs of 0.55 T systems. Radiologe 62(5):400–404

Article  PubMed  PubMed Central  Google Scholar 

Dillinger H, Kozerke S, Guenthner C (2022) Direct comparison of gradient fidelity and acoustic noise of the same MRI system at 3 T and 0.75 T. Magn Reson Med 88(4):1937–1947

Article  PubMed  Google Scholar 

Gilk T, Kanal E (2023) MRI safety considerations associated with low-field MRI: mostly good news. MAGMA 36(3):427–428

Article  PubMed  Google Scholar 

Campbell-Washburn AE, Ramasawmy R, Restivo MC, Bhattacharya I, Basar B, Herzka DA et al (2019) Opportunities in interventional and diagnostic imaging by using high-performance low-field-strength MRI. Radiology 293(2):384–393

Article  PubMed  Google Scholar 

Healthineers S (2020) Siemens Healthineers moves into new clinical fields with its smallest and most lightweight whole-body MRI. https://www.siemens-healthineers.com/press-room/press-releases/magnetom-free-max.html

Guenthner C, Peereboom SM, Dillinger H, McGrath C, Albannay MM, Vishnevskiy V et al (2023) Ramping down a clinical 3 T scanner: a journey into MRI and MRS at 0.75 T. MAGMA 36:355–373

Article  PubMed  PubMed Central  Google Scholar 

Klüter S (2019) Technical design and concept of a 0.35 T MR-Linac. Clin Transl Radiat Oncol. 18:98–101

PubMed  PubMed Central  Google Scholar 

Krupa K, Bekiesińska-Figatowska M (2015) Artifacts in magnetic resonance imaging. Pol J Radiol 80:93–106

Article  PubMed  PubMed Central  Google Scholar 

Hargreaves BA, Worters PW, Pauly KB, Pauly JM, Koch KM, Gold GE (2011) Metal-induced artifacts in MRI. AJR Am J Roentgenol 197(3):547–555

Article  PubMed  PubMed Central  Google Scholar 

Oshinski JN, Delfino JG, Sharma P, Gharib AM, Pettigrew RI (2010) Cardiovascular magnetic resonance at 3.0 T: current state of the art. J Cardiovasc Magn Reson 12(1):55

Article  PubMed  PubMed Central  Google Scholar 

Shapiro L, Harish M, Hargreaves B, Staroswiecki E, Gold G (2012) Advances in musculoskeletal MRI: technical considerations. J Magn Reson Imaging 36(4):775–787

Article  PubMed  PubMed Central  Google Scholar 

Haskell MW, Nielsen JF, Noll DC (2023) Off-resonance artifact correction for MRI: a review. NMR Biomed 36(5):e4867

Article  PubMed  Google Scholar 

Hennig J (2023) An evolution of low-field strength MRI. MAGMA 36(3):335–346

Article  PubMed  PubMed Central  Google Scholar 

Thompson SM, Gorny KR, Koepsel EMK, Welch BT, Mynderse L, Lu A et al (2021) Body interventional MRI for diagnostic and interventional radiologists: current practice and future prospects. Radiographics 41(6):1785–1801

Article  PubMed  Google Scholar 

Rogers T, Campbell-Washburn AE, Ramasawmy R, Yildirim DK, Bruce CG, Grant LP et al (2023) Interventional cardiovascular magnetic resonance: state-of-the-art. J Cardiovasc Magn Reson 25(1):48

Article  PubMed  PubMed Central  Google Scholar 

Webb A, O’Reilly T (2023) Tackling SNR at low-field: a review of hardware approaches for point-of-care systems. MAGMA 36(3):375–393

Article  PubMed  PubMed Central  Google Scholar 

Sze C, Singh Z, Punyala A, Satya P, Sadinski M, Narayan R et al (2023) Feasibility and preliminary clinical tolerability of low-field MRI-guided prostate biopsy. Prostate 83(7):656–662

Article  CAS  PubMed  Google Scholar 

Barahman M, Grunvald E, Prado PJ, Bussandri A, Henderson WC, Wolfson T et al (2022) Point-of-care magnetic resonance technology to measure liver fat: Phantom and first-in-human pilot study. Magn Reson Med 88(4):1794–1805

Article  PubMed  PubMed Central  Google Scholar 

Wang Y, Xu Y, Zhang M, Emmanuel Komolafe T, Wang W, Luo H et al (2021) A single-sided magnet for deep-depth fat quantification. J Magn Reson 331:107053

Article  CAS  PubMed  Google Scholar 

Qin C, Murali S, Lee E, Supramaniam V, Hausenloy DJ, Obungoloch J et al (2022) Sustainable low-field cardiovascular magnetic resonance in changing healthcare systems. Eur Heart J Cardiovasc Imaging 23(6):e246–e260

Article  PubMed  PubMed Central  Google Scholar 

Simonetti OP, Ahmad R (2017) Low-field cardiac magnetic resonance imaging: a compelling case for cardiac magnetic resonance’s future. Circ Cardiovasc Imaging 10(6):e005446

Article  PubMed  PubMed Central  Google Scholar 

Nayak KS, Lim Y, Campbell-Washburn AE, Steeden J (2022) Real-time magnetic resonance imaging. J Magn Reson Imaging 55(1):81–99

Article  PubMed  Google Scholar 

Campbell-Washburn AE, Varghese J, Nayak KS, Ramasawmy R, Simonetti OP (2023) Cardiac MRI at low field strengths. J Magn Reson Imaging. https://doi.org/10.1002/jmri.28890

Strach K, Naehle CP, Mühlsteffen A, Hinz M, Bernstein A, Thomas D et al (2010) Low-field magnetic resonance imaging: increased safety for pacemaker patients? Europace 12(7):952–960

Article  PubMed  Google Scholar 

Fischer SE, Wickline SA, Lorenz CH (1999) Novel real-time R-wave detection algorithm based on the vectorcardiogram for accurate gated magnetic resonance acquisitions. Magn Reson Med 42(2):361–370

Article  CAS  PubMed  Google Scholar 

Rashid S, Han F, Gao Y, Sung K, Cao M, Yang Y et al (2018) Cardiac balanced steady-state free precession MRI at 0.35 T: a comparison study with 1.5 T. Quant Imaging Med Surg 8(7):627–636

Article  PubMed  PubMed Central  Google Scholar 

Varghese J, Craft J, Crabtree CD, Liu Y, Jin N, Chow K et al (2020) Assessment of cardiac function, blood flow and myocardial tissue relaxation parameters at 0.35 T. NMR Biomed 33(7):e4317

Article  PubMed  Google Scholar 

Bandettini WP, Shanbhag SM, Mancini C, McGuirt DR, Kellman P, Xue H et al (2020) A comparison of cine CMR imaging at 0.55 T and 1.5 T. J Cardiovasc Magn Reson 22(1):37

Article  PubMed  PubMed Central  Google Scholar 

Bandettini WP, Shanbhag SM, Mancini C, Henry JL, Lowery M, Chen MY et al (2021) Evaluation of myocardial infarction by cardiovascular magnetic resonance at 0.55-T compared to 1.5-T. JACC Cardiovasc Imaging 14(9):1866–1868

Article  PubMed  Google Scholar 

Mancini C, Bandettini WP, Kellman P, Xue H, Campbell-Washburn AE (eds) (2021) Comparison of cardiac T1 mapping on a high-performance 0.55T scanner and a conventional 1.5T scanner. In: 2021 ISMRM & SMRT Annual Meeting & Exhibition; 2021; Virtual, p S31

Bandettini W, Shanbhag S, Mancini C, Henry J, Lowery M, Chen M (2021) Evaluation of myocardial infarction by CMR at 0.55T compared to 1.5T. JACC Cardiovasc Imaging 14(9):1866–1868

Varghese J, Jin N, Giese D, Chen C, Liu Y, Pan Y et al (2023) Building a comprehensive cardiovascular magnetic resonance exam on a commercial 0.55 T system: a pictorial essay on potential applications. Front Cardiovasc Med. 10:1120982

Article  PubMed  PubMed Central  Google Scholar 

Tian Y, Cui SX, Lim Y, Lee NG, Zhao Z, Nayak KS (2022) Contrast-optimal simultaneous multi-slice bSSFP cine cardiac imaging at 0.55 T. Magn Reson Med 89:746–755

Article  PubMed  PubMed Central  Google Scholar 

Restivo MC, Ramasawmy R, Bandettini WP, Herzka DA, Campbell-Washburn AE (2020) Efficient spiral in-out and EPI balanced steady-state free precession cine imaging using a high-performance 0.55T MRI. Magn Reson Med 84(5):2364–2375

Article  PubMed  PubMed Central 

Comments (0)

No login
gif