Ladd ME, Bachert P, Meyerspeer M, Moser E, Nagel AM, Norris DG et al (2018) Pros and cons of ultra-high-field MRI/MRS for human application. Prog Nucl Magn Reson Spectrosc 109:1–50
Article CAS PubMed Google Scholar
Farahani K, Sinha U, Sinha S, Chiu LC, Lufkin RB (1990) Effect of field strength on susceptibility artifacts in magnetic resonance imaging. Comput Med Imaging Graph 14(6):409–413
Article CAS PubMed Google Scholar
Ho HS (2001) Safety of metallic implants in magnetic resonance imaging. J Magn Reson Imaging 14(4):472–477
Article CAS PubMed Google Scholar
Hori M, Hagiwara A, Goto M, Wada A, Aoki S (2021) Low-field magnetic resonance imaging: its history and renaissance. Invest Radiol 56(11):669–679
Article PubMed PubMed Central Google Scholar
Graves MJ (2022) 3 T: the good, the bad and the ugly. Br J Radiol 95(1130):20210708
Arnold TC, Freeman CW, Litt B, Stein JM (2023) Low-field MRI: clinical promise and challenges. J Magn Reson Imaging 57(1):25–44
Rusche T, Vosshenrich J, Winkel DJ, Donners R, Segeroth M, Bach M et al (2022) More space, less noise-new-generation low-field magnetic resonance imaging systems can improve patient comfort: a prospective 0.55T–1.5T-scanner comparison. J Clin Med 11(22):6705
Article PubMed PubMed Central Google Scholar
Vosshenrich J, Breit HC, Bach M, Merkle EM (2022) Economic aspects of low-field magnetic resonance imaging: acquisition, installation, and maintenance costs of 0.55 T systems. Radiologe 62(5):400–404
Article PubMed PubMed Central Google Scholar
Dillinger H, Kozerke S, Guenthner C (2022) Direct comparison of gradient fidelity and acoustic noise of the same MRI system at 3 T and 0.75 T. Magn Reson Med 88(4):1937–1947
Gilk T, Kanal E (2023) MRI safety considerations associated with low-field MRI: mostly good news. MAGMA 36(3):427–428
Campbell-Washburn AE, Ramasawmy R, Restivo MC, Bhattacharya I, Basar B, Herzka DA et al (2019) Opportunities in interventional and diagnostic imaging by using high-performance low-field-strength MRI. Radiology 293(2):384–393
Healthineers S (2020) Siemens Healthineers moves into new clinical fields with its smallest and most lightweight whole-body MRI. https://www.siemens-healthineers.com/press-room/press-releases/magnetom-free-max.html
Guenthner C, Peereboom SM, Dillinger H, McGrath C, Albannay MM, Vishnevskiy V et al (2023) Ramping down a clinical 3 T scanner: a journey into MRI and MRS at 0.75 T. MAGMA 36:355–373
Article PubMed PubMed Central Google Scholar
Klüter S (2019) Technical design and concept of a 0.35 T MR-Linac. Clin Transl Radiat Oncol. 18:98–101
PubMed PubMed Central Google Scholar
Krupa K, Bekiesińska-Figatowska M (2015) Artifacts in magnetic resonance imaging. Pol J Radiol 80:93–106
Article PubMed PubMed Central Google Scholar
Hargreaves BA, Worters PW, Pauly KB, Pauly JM, Koch KM, Gold GE (2011) Metal-induced artifacts in MRI. AJR Am J Roentgenol 197(3):547–555
Article PubMed PubMed Central Google Scholar
Oshinski JN, Delfino JG, Sharma P, Gharib AM, Pettigrew RI (2010) Cardiovascular magnetic resonance at 3.0 T: current state of the art. J Cardiovasc Magn Reson 12(1):55
Article PubMed PubMed Central Google Scholar
Shapiro L, Harish M, Hargreaves B, Staroswiecki E, Gold G (2012) Advances in musculoskeletal MRI: technical considerations. J Magn Reson Imaging 36(4):775–787
Article PubMed PubMed Central Google Scholar
Haskell MW, Nielsen JF, Noll DC (2023) Off-resonance artifact correction for MRI: a review. NMR Biomed 36(5):e4867
Hennig J (2023) An evolution of low-field strength MRI. MAGMA 36(3):335–346
Article PubMed PubMed Central Google Scholar
Thompson SM, Gorny KR, Koepsel EMK, Welch BT, Mynderse L, Lu A et al (2021) Body interventional MRI for diagnostic and interventional radiologists: current practice and future prospects. Radiographics 41(6):1785–1801
Rogers T, Campbell-Washburn AE, Ramasawmy R, Yildirim DK, Bruce CG, Grant LP et al (2023) Interventional cardiovascular magnetic resonance: state-of-the-art. J Cardiovasc Magn Reson 25(1):48
Article PubMed PubMed Central Google Scholar
Webb A, O’Reilly T (2023) Tackling SNR at low-field: a review of hardware approaches for point-of-care systems. MAGMA 36(3):375–393
Article PubMed PubMed Central Google Scholar
Sze C, Singh Z, Punyala A, Satya P, Sadinski M, Narayan R et al (2023) Feasibility and preliminary clinical tolerability of low-field MRI-guided prostate biopsy. Prostate 83(7):656–662
Article CAS PubMed Google Scholar
Barahman M, Grunvald E, Prado PJ, Bussandri A, Henderson WC, Wolfson T et al (2022) Point-of-care magnetic resonance technology to measure liver fat: Phantom and first-in-human pilot study. Magn Reson Med 88(4):1794–1805
Article PubMed PubMed Central Google Scholar
Wang Y, Xu Y, Zhang M, Emmanuel Komolafe T, Wang W, Luo H et al (2021) A single-sided magnet for deep-depth fat quantification. J Magn Reson 331:107053
Article CAS PubMed Google Scholar
Qin C, Murali S, Lee E, Supramaniam V, Hausenloy DJ, Obungoloch J et al (2022) Sustainable low-field cardiovascular magnetic resonance in changing healthcare systems. Eur Heart J Cardiovasc Imaging 23(6):e246–e260
Article PubMed PubMed Central Google Scholar
Simonetti OP, Ahmad R (2017) Low-field cardiac magnetic resonance imaging: a compelling case for cardiac magnetic resonance’s future. Circ Cardiovasc Imaging 10(6):e005446
Article PubMed PubMed Central Google Scholar
Nayak KS, Lim Y, Campbell-Washburn AE, Steeden J (2022) Real-time magnetic resonance imaging. J Magn Reson Imaging 55(1):81–99
Campbell-Washburn AE, Varghese J, Nayak KS, Ramasawmy R, Simonetti OP (2023) Cardiac MRI at low field strengths. J Magn Reson Imaging. https://doi.org/10.1002/jmri.28890
Strach K, Naehle CP, Mühlsteffen A, Hinz M, Bernstein A, Thomas D et al (2010) Low-field magnetic resonance imaging: increased safety for pacemaker patients? Europace 12(7):952–960
Fischer SE, Wickline SA, Lorenz CH (1999) Novel real-time R-wave detection algorithm based on the vectorcardiogram for accurate gated magnetic resonance acquisitions. Magn Reson Med 42(2):361–370
Article CAS PubMed Google Scholar
Rashid S, Han F, Gao Y, Sung K, Cao M, Yang Y et al (2018) Cardiac balanced steady-state free precession MRI at 0.35 T: a comparison study with 1.5 T. Quant Imaging Med Surg 8(7):627–636
Article PubMed PubMed Central Google Scholar
Varghese J, Craft J, Crabtree CD, Liu Y, Jin N, Chow K et al (2020) Assessment of cardiac function, blood flow and myocardial tissue relaxation parameters at 0.35 T. NMR Biomed 33(7):e4317
Bandettini WP, Shanbhag SM, Mancini C, McGuirt DR, Kellman P, Xue H et al (2020) A comparison of cine CMR imaging at 0.55 T and 1.5 T. J Cardiovasc Magn Reson 22(1):37
Article PubMed PubMed Central Google Scholar
Bandettini WP, Shanbhag SM, Mancini C, Henry JL, Lowery M, Chen MY et al (2021) Evaluation of myocardial infarction by cardiovascular magnetic resonance at 0.55-T compared to 1.5-T. JACC Cardiovasc Imaging 14(9):1866–1868
Mancini C, Bandettini WP, Kellman P, Xue H, Campbell-Washburn AE (eds) (2021) Comparison of cardiac T1 mapping on a high-performance 0.55T scanner and a conventional 1.5T scanner. In: 2021 ISMRM & SMRT Annual Meeting & Exhibition; 2021; Virtual, p S31
Bandettini W, Shanbhag S, Mancini C, Henry J, Lowery M, Chen M (2021) Evaluation of myocardial infarction by CMR at 0.55T compared to 1.5T. JACC Cardiovasc Imaging 14(9):1866–1868
Varghese J, Jin N, Giese D, Chen C, Liu Y, Pan Y et al (2023) Building a comprehensive cardiovascular magnetic resonance exam on a commercial 0.55 T system: a pictorial essay on potential applications. Front Cardiovasc Med. 10:1120982
Article PubMed PubMed Central Google Scholar
Tian Y, Cui SX, Lim Y, Lee NG, Zhao Z, Nayak KS (2022) Contrast-optimal simultaneous multi-slice bSSFP cine cardiac imaging at 0.55 T. Magn Reson Med 89:746–755
Article PubMed PubMed Central Google Scholar
Restivo MC, Ramasawmy R, Bandettini WP, Herzka DA, Campbell-Washburn AE (2020) Efficient spiral in-out and EPI balanced steady-state free precession cine imaging using a high-performance 0.55T MRI. Magn Reson Med 84(5):2364–2375
Comments (0)