Semin intervent Radiol 2023; 40(05): 461-466
DOI: 10.1055/s-0043-1772814
Muhamad Serhal
1
Section of Interventional Radiology, Department of Radiology, Northwestern Memorial Hospital, Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois
,
Andrew C. Gordon
1
Section of Interventional Radiology, Department of Radiology, Northwestern Memorial Hospital, Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois
,
Daniel B. Brown
2
Division of Interventional Radiology, Vanderbilt University Medical Center, Nashville, Tennessee
,
Beau B. Toskich
3
Division of Interventional Radiology, Mayo Clinic Florida, Jacksonville, Florida
,
Robert J. Lewandowski
1
Section of Interventional Radiology, Department of Radiology, Northwestern Memorial Hospital, Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois
› Author Affiliations
› Further Information
Also available at
Buy Article Permissions and Reprints
Transarterial radioembolization (TARE) is an intra-arterial radiation therapy for patients with primary and secondary hepatic malignancies, and its role outside the liver is evolving. The principle of radioembolization is the transcatheter, intra-arterial delivery of a radioisotope via tumor feeding arteries and treating the perfused tissue with brachytherapy. Hypervascular tumors preferentially receive the radioisotope-carrying microspheres compared to the normal hepatic parenchyma.[1] Because of this, knowledge of hepatic arterial anatomy, principles of transcatheter intra-arterial embolization, and radioisotope (radionuclide or radioactive isotope) characteristics is important to optimize treatment strategies. This article provides a general, back-to-the-basics, overview of available radioembolic devices and an update on radioembolic devices in development.
Publication History
Article published online:
02 November 2023
© 2023. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
References
1
Lewandowski RJ,
Geschwind JF,
Liapi E,
Salem R.
Transcatheter intraarterial therapies: rationale and overview. Radiology 2011; 259 (03) 641-657
2
Muller JH,
Rossier PH.
A new method for the treatment of cancer of the lungs by means of artificial radioactivity. Acta Radiol 1951; 35 (5-6): 449-468
3
Bouvry C,
Palard X,
Edeline J.
et al.
Transarterial radioembolization (TARE) agents beyond 90Y-microspheres. BioMed Res Int 2018; 2018: 1435302
4
Andrews JC,
Walker SC,
Ackermann RJ,
Cotton LA,
Ensminger WD,
Shapiro B.
Hepatic radioembolization with yttrium-90 containing glass microspheres: preliminary results and clinical follow-up. J Nucl Med 1994; 35 (10) 1637-1644
5
Dancey JE,
Shepherd FA,
Paul K.
et al.
Treatment of nonresectable hepatocellular carcinoma with intrahepatic 90Y-microspheres. J Nucl Med 2000; 41 (10) 1673-1681
6
Bretagne JF,
Raoul JL,
Bourguet P.
et al.
Hepatic artery injection of I-131-labeled lipiodol. Part II. Preliminary results of therapeutic use in patients with hepatocellular carcinoma and liver metastases. Radiology 1988; 168 (02) 547-550
7
Mumper RJ,
Ryo UY,
Jay M.
Neutron-activated holmium-166-poly (L-lactic acid) microspheres: a potential agent for the internal radiation therapy of hepatic tumors. J Nucl Med 1991; 32 (11) 2139-2143
8
De La Vega JC,
Esquinas PL,
Rodríguez-Rodríguez C.
et al.
Radioembolization of hepatocellular carcinoma with built-in dosimetry: first in vivo results with uniformly-sized, biodegradable microspheres labeled with 188Re. Theranostics 2019; 9 (03) 868-883
9
Kennedy AS,
Nutting C,
Coldwell D,
Gaiser J,
Drachenberg C.
Pathologic response and microdosimetry of (90)Y microspheres in man: review of four explanted whole livers. Int J Radiat Oncol Biol Phys 2004; 60 (05) 1552-1563
10
Sacco R,
Mismas V,
Marceglia S.
et al.
Transarterial radioembolization for hepatocellular carcinoma: an update and perspectives. World J Gastroenterol 2015; 21 (21) 6518-6525
11
Pasciak AS,
Manupipatpong S,
Hui FK.
et al.
Yttrium-90 radioembolization as a possible new treatment for brain cancer: proof of concept and safety analysis in a canine model. EJNMMI Res 2020; 10 (01) 96
12
Mouli SK,
Raiter S,
Harris K.
et al.
Yttrium-90 radioembolization to the prostate gland: proof of concept in a canine model and clinical translation. J Vasc Interv Radiol 2021; 32 (08) 1103-1112.e12
13
Hamoui N,
Gates VL,
Gonzalez J,
Lewandowski RJ,
Salem R.
Radioembolization of renal cell carcinoma using yttrium-90 microspheres. J Vasc Interv Radiol 2013; 24 (02) 298-300
14
Ricke J,
Großer O,
Amthauer H.
Y90-radioembolization of lung metastases via the bronchial artery: a report of 2 cases. Cardiovasc Intervent Radiol 2013; 36 (06) 1664-1669
15
Nijsen JF,
van het Schip AD,
Hennink WE,
Rook DW,
van Rijk PP,
de Klerk JM.
Advances in nuclear oncology: microspheres for internal radionuclide therapy of liver tumours. Curr Med Chem 2002; 9 (01) 73-82
16
Brechbiel MW.
Targeted alpha-therapy: past, present, future?. Dalton Trans 2007; (43) 4918-4928
17
Li R,
Li D,
Jia G,
Li X,
Sun G,
Zuo C.
Diagnostic performance of theranostic radionuclides used in transarterial radioembolization for liver cancer. Front Oncol 2021; 10: 551622
18
Kennedy AS,
Kleinstreuer C,
Basciano CA,
Dezarn WA.
Computer modeling of yttrium-90-microsphere transport in the hepatic arterial tree to improve clinical outcomes. Int J Radiat Oncol Biol Phys 2010; 76 (02) 631-637
19
Salem R,
Mazzaferro V,
Sangro B.
Yttrium 90 radioembolization for the treatment of hepatocellular carcinoma: biological lessons, current challenges, and clinical perspectives. Hepatology 2013; 58 (06) 2188-2197
20
Kim YC,
Kim YH,
Uhm SH.
et al.
Radiation safety issues in y-90 microsphere selective hepatic radioembolization therapy: possible radiation exposure from the patients. Nucl Med Mol Imaging 2010; 44 (04) 252-260
21
Henry EC,
Strugari M,
Mawko G.
et al.
Precision dosimetry in yttrium-90 radioembolization through CT imaging of radiopaque microspheres in a rabbit liver model. EJNMMI Phys 2022; 9 (01) 21
22
Vente MA,
Nijsen JF,
de Roos R.
et al.
Neutron activation of holmium poly(L-lactic acid) microspheres for hepatic arterial radio-embolization: a validation study. Biomed Microdevices 2009; 11 (04) 763-772
23
Nijsen JF,
Krijger GC,
van Het Schip AD.
The bright future of radionuclides for cancer therapy. Anticancer Agents Med Chem 2007; 7 (03) 271-290
24
Seevinck PR,
van de Maat GH,
de Wit TC,
Vente MA,
Nijsen JF,
Bakker CJ.
Magnetic resonance imaging-based radiation-absorbed dose estimation of 166Ho microspheres in liver radioembolization. Int J Radiat Oncol Biol Phys 2012; 83 (03) e437-e444
25
van de Maat GH,
Seevinck PR,
Elschot M.
et al.
MRI-based biodistribution assessment of holmium-166 poly(L-lactic acid) microspheres after radioembolisation. Eur Radiol 2013; 23 (03) 827-835
26
Smits ML,
Nijsen JF,
van den Bosch MA.
et al.
Holmium-166 radioembolization for the treatment of patients with liver metastases: design of the phase I HEPAR trial. J Exp Clin Cancer Res 2010; 29 (01) 70
27
Braat AJAT,
Prince JF,
van Rooij R,
Bruijnen RCG,
van den Bosch MAAJ,
Lam MGEH.
Safety analysis of holmium-166 microsphere scout dose imaging during radioembolisation work-up: a cohort study. Eur Radiol 2018; 28 (03) 920-928
28
Smits MLJ,
Dassen MG,
Prince JF.
et al.
The superior predictive value of 166Ho-scout compared with 99mTc-macroaggregated albumin prior to 166Ho-microspheres radioembolization in patients with liver metastases. Eur J Nucl Med Mol Imaging 2020; 47 (04) 798-806
29
Stella M,
Braat AJAT,
van Rooij R,
de Jong HWAM,
Lam MGEH.
Holmium-166 radioembolization: current status and future prospective. Cardiovasc Intervent Radiol 2022; 45 (11) 1634-1645
30
Reinders MTM,
Smits MLJ,
van Roekel C,
Braat AJAT.
Holmium-166 microsphere radioembolization of hepatic malignancies. Semin Nucl Med 2019; 49 (03) 237-243
31
Alrfooh A,
Patel A,
Laroia S.
Transarterial radioembolization agents: a review of the radionuclide agents and the carriers. Nucl Med Mol Imaging 2021; 55 (04) 162-172
32
Morphis M,
van Staden JA,
du Raan H,
Ljungberg M.
Evaluation of iodine-123 and iodine-131 SPECT activity quantification: a Monte Carlo study. EJNMMI Phys 2021; 8 (01) 61
33
Raoul JI,
Bretagne JF,
Caucanas JP.
et al.
Internal radiation therapy for hepatocellular carcinoma. Results of a French multicenter phase II trial of transarterial injection of iodine 131-labeled lipiodol. Cancer 1992; 69 (02) 346-352
34
Raoul JL,
Guyader D,
Bretagne JF.
et al.
Randomized controlled trial for hepatocellular carcinoma with portal vein thrombosis: intra-arterial iodine-131-iodized oil versus medical support. J Nucl Med 1994; 35 (11) 1782-1787
35
Raoul JL,
Boucher E,
Roland V,
Garin E.
131-Iodine lipiodol therapy in hepatocellular carcinoma. Q J Nucl Med Mol Imaging 2009; 53 (03) 348-355
36
Lau WY,
Leung TW,
Ho SK.
et al.
Adjuvant intra-arterial iodine-131-labelled lipiodol for resectable hepatocellular carcinoma: a prospective randomised trial. Lancet 1999; 353 (9155) 797-801
37
Perring S,
Hind R,
Fleming J,
Birch S,
Batty V,
Taylor I.
Dosimetric assessment of radiolabelled lipiodol as a potential therapeutic agent in colorectal liver metastases using combined CT and SPECT. Nucl Med Commun 1994; 15 (01) 34-38
38
Bozkurt MF,
Salanci BV,
Uğur Ö.
Intra-arterial radionuclide therapies for liver tumors. Semin Nucl Med 2016; 46 (04) 324-339
39
Bernal P,
Raoul JL,
Vidmar G.
et al.
Intra-arterial rhenium-188 lipiodol in the treatment of inoperable hepatocellular carcinoma: results of an IAEA-sponsored multination study. Int J Radiat Oncol Biol Phys 2007; 69 (05) 1448-1455
40
De Ruyck K,
Lambert B,
Bacher K.
et al.
Biologic dosimetry of 188Re-HDD/lipiodol versus 131I-lipiodol therapy in patients with hepatocellular carcinoma. J Nucl Med 2004; 45 (04) 612-618
41
Wunderlich G,
Pinkert J,
Stintz M,
Kotzerke J.
Labeling and biodistribution of different particle materials for radioembolization therapy with 188Re. Appl Radiat Isot 2005; 62 (05) 745-750
42
Srinivas SM,
Nasr EC,
Kunam VK,
Bullen JA,
Purysko AS.
Administered activity and outcomes of glass versus resin (90)Y microsphere radioembolization in patients with colorectal liver metastases. J Gastrointest Oncol 2016; 7 (04) 530-539
43
Westcott MA,
Coldwell DM,
Liu DM,
Zikria JF.
The development, commercialization, and clinical context of yttrium-90 radiolabeled resin and glass microspheres. Adv Radiat Oncol 2016; 1 (04) 351-364
44
Ehrhardt GJ,
Day DE.
Therapeutic use of 90Y microspheres. Int J Rad Appl Instrum B 1987; 14 (03) 233-242
45
Villalobos A,
Soliman MM,
Majdalany BS.
et al.
Yttrium-90 radioembolization dosimetry: what trainees need to know. Semin Intervent Radiol 2020; 37 (05) 543-554
46
Pasciak AS,
Abiola G,
Liddell RP.
et al.
The number of microspheres in Y90 radioembolization directly affects normal tissue radiation exposure. Eur J Nucl Med Mol Imaging 2020; 47 (04) 816-827
47
Basciano C,
Kleinstreuer C,
Kennedy A.
Computational fluid dynamics modeling of 90Y microspheres in human hepatic tumors. J Nucl Med Radiat Therapy 2011; 01 DOI:
10.4172/2155-9619.1000112.
48
Caine M,
McCafferty MS,
McGhee S.
et al.
Impact of yttrium-90 microsphere density, flow dynamics, and administration technique on spatial distribution: analysis using an in vitro model. J Vasc Interv Radiol 2017; 28 (02) 260-268.e2
49
Piana PM,
Bar V,
Doyle L.
et al.
Early arterial stasis during resin-based yttrium-90 radioembolization: incidence and preliminary outcomes. HPB (Oxford) 2014; 16 (04) 336-341
50
Koran ME,
Stewart S,
Baker JC.
et al.
Five percent dextrose maximizes dose delivery of yttrium-90 resin microspheres and reduces rates of premature stasis compared to sterile water. Biomed Rep 2016; 5 (06) 745-748
51
Workman C,
Doyle P,
Grice J.
et al.
Abstract no. 261 assessment of delivery, dosimetry and imaging response with FLEX versus day of calibration resin 90Y microspheres for hepatocellular carcinoma. J Vasc Interv Radiol 2023; 34 (03) S118-S119
52
Gulec SA,
McGoron AJ.
Radiomicrosphere dosimetry: principles and current state of the art. Semin Nucl Med 2022; 52 (02) 215-228
53
Teow Y,
Valiyaveettil S.
Active targeting of cancer cells using folic acid-conjugated platinum nanoparticles. Nanoscale 2010; 2 (12) 2607-2613
54
Montazeri SA,
De la Garza-Ramos C,
Lewis AR.
et al.
Hepatocellular carcinoma radiation segmentectomy treatment intensification prior to liver transplantation increases rates of complete pathologic necrosis: an explant analysis of 75 tumors. Eur J Nucl Med Mol Imaging 2022; 49 (11) 3892-3897
Comments (0)