Zugazagoitia J, Guedes C, Ponce S, Ferrer I, Molina-Pinelo S, Paz-Ares L. Current challenges in cancer treatment. Clin Ther. 2016;38(7):1551–66.
Tzedakis S, Sindayigaya R, Dhote A, Marchese U, Barret M, Belle A, et al. Perihilar cholangiocarcinoma: what the radiologist needs to know. Diagn Interv Imaging. 2022;103(6):288–301.
Bodard S, Liu Y, Guinebert S, Kherabi Y, Asselah T. Performance of radiomics in microvascular invasion risk stratification and prognostic assessment in hepatocellular carcinoma: a meta-analysis. Cancers. 2023;15(3):743.
Article PubMed PubMed Central Google Scholar
Pellat A, Barat M, Coriat R, Soyer P, Dohan A. Artificial intelligence: a review of current applications in hepatocellular carcinoma imaging. Diagn Interv Imaging. 2023;104(1):24–36.
Xue C, Zhou Q, Xi H, Zhou J. Radiomics: a review of current applications and possibilities in the assessment of tumor microenvironment. Diagn Interv Imaging. 2023;104(3):113–22.
Pellat A, Barat M. Tumor microenvironment: a new application for radiomics. Diagn Interv Imaging. 2023;104(3):93–4.
Liu M, Bian J. Radiomics signatures based on contrast-enhanced CT for preoperative prediction of the Ki-67 proliferation state in gastrointestinal stromal tumors. Jpn J Radiol. 2023;41(7):741–51.
Article CAS PubMed Google Scholar
Yu MM, Shi D, Li Q, Li JB, Li Q, Yu RS. KRAS mutation status between left- and right-sided colorectal cancer: are there any differences in computed tomography? Jpn J Radiol. 2023;41(1):83–91.
Article CAS PubMed Google Scholar
Ren T, Zhang W, Li S, Deng L, Xue C, Li Z, et al. Combination of clinical and spectral-CT parameters for predicting lymphovascular and perineural invasion in gastric cancer. Diagn Interv Imaging. 2022;103(12):584–93.
Boeken T, Feydy J, Lecler A, Soyer P, Feydy A, Barat M, et al. Artificial intelligence in diagnostic and interventional radiology: where are we now? Diagn Interv Imaging. 2023;104(1):1–5.
Fusco R, Granata V, Grazzini G, Pradella S, Borgheresi A, Bruno A, et al. Radiomics in medical imaging: pitfalls and challenges in clinical management. Jpn J Radiol. 2022;40(9):919–29.
Koretsune Y, Sone M, Sugawara S, Wakatsuki Y, Ishihara T, Hattori C, et al. Validation of a convolutional neural network for the automated creation of curved planar reconstruction images along the main pancreatic duct. Jpn J Radiol. 2023;41(2):228–34.
Mazurowski MA. Radiogenomics: what it is and why it is important. J Am College Radiol. 2015;12(8):862–6.
Marti-Bonmati L, Koh DM, Riklund K, Bobowicz M, Roussakis Y, Vilanova JC, et al. Considerations for artificial intelligence clinical impact in oncologic imaging: an AI4HI position paper. Insights Imaging. 2022;13(1):89.
Article PubMed PubMed Central Google Scholar
Soyer P, Fishman EK, Rowe SP, Patlas MN, Chassagnon G. Does artificial intelligence surpass the radiologist? Diagn Interv Imaging. 2022;103(10):445–7.
Greffier J, Villani N, Defez D, Dabli D, Si-Mohamed S. Spectral CT imaging: technical principles of dual-energy CT and multi-energy photon-counting CT. Diagn Interv Imaging. 2023;104(4):167–77.
Nakamura Y, Higaki T, Kondo S, Kawashita I, Takahashi I, Awai K. An introduction to photon-counting detector CT (PCD CT) for radiologists. Jpn J Radiol. 2023;41(3):266–82.
Jungblut L, Abel F, Nakhostin D, Mergen V, Sartoretti T, Euler A, et al. Impact of photon counting detector CT derived virtual monoenergetic images and iodine maps on the diagnosis of pleural empyema. Diagn Interv Imaging. 2023;104(2):84–90.
Meyer M, Hohenberger P, Overhoff D, et al. Dual-energy CT vital iodine tumor burden for response assessment in patients with metastatic GIST undergoing TKI therapy: comparison with standard CT and FDG PET/CT criteria. AJR Am J Roentgenol. 2022;218(4):659–69.
Dabli D, Frandon J, Belaouni A, Akessoul P, Addala T, Berny L, et al. Optimization of image quality and accuracy of low iodine concentration quantification as function of dose level and reconstruction algorithm for abdominal imaging using dual-source CT: a phantom study. Diagn Interv Imaging. 2022;103(1):31–40.
Greffier J, Dabli D, Hamard A, Akessoul P, Belaouni A, Beregi JP, et al. Impact of dose reduction and the use of an advanced model-based iterative reconstruction algorithm on spectral performance of a dual-source CT system: a task-based image quality assessment. Diagn Interv Imaging. 2021;102(7–8):405–12.
Barat M, Pellat A, Dohan A, Hoeffel C, Coriat R, Soyer P. CT and MRI of gastrointestinal stromal tumors: new trends and perspectives. Can Assoc Radiol J. 2023. https://doi.org/10.1177/08465371231180510.
Martin SS, Pfeifer S, Wichmann JL, Albrecht MH, Leithner D, Lenga L, et al. Noise-optimized virtual monoenergetic dual energy computed tomography: optimization of kiloelectron volt settings in patients with gastrointestinal stromal tumors. Abdom Radiol. 2017;42(3):718–26.
Zhang X, Bai L, Wang D, Huang X, Wei J, Zhang W, et al. Gastrointestinal stromal tumor risk classification: spectral CT quantitative parameters. Abdom Radiol. 2019;44(7):2329–36.
Nagayama Y, Tanoue S, Inoue T, Oda S, Nakaura T, Utsunomiya D, et al. Dual-layer spectral CT improves image quality of multiphasic pancreas CT in patients with pancreatic ductal adenocarcinoma. Eur Radiol. 2020;30:394–403.
Noda Y, Goshima S, Kaga T, Ando T, Miyoshi T, Kawai H, et al. Virtual monochromatic image at lower energy level for assessing pancreatic ductal adenocarcinoma in fast kV-switching dual-energy CT. Clin Radiol. 2020;75(320):e17-23.
Noda Y, Goshima S, Miyoshi T, Kawada H, Kawai N, Tanahashi Y, et al. Assessing chemotherapeutic response in pancreatic ductal adenocarcinoma: histogram analysis of iodine concentration and CT number in single-source dual-energy CT. AJR Am J Roentgenol. 2018;211:1221–6.
Yoo J, Lee JM, Yoon JH, Joo I, Lee ES, Jeon SK, et al. Comparison of low kVp CT and dual-energy CT for the evaluation of hypervascular hepatocellular carcinoma. Abdom Radiol. 2021;46(7):3217–26.
Voss BA, Khandelwal A, Wells ML, Inoue A, Venkatesh SK, Lee YS, et al. Impact of dual-energy 50-keV virtual monoenergetic images on radiologist confidence in detection of key imaging findings of small hepatocellular carcinomas using multiphase liver CT. Acta Radiol. 2022;63(11):1443–52.
Reimer RP, Große Hokamp N, Fehrmann Efferoth A, Krauskopf A, Zopfs D, Kröger JR, Persigehl T, Maintz D, Bunck AC. Virtual monoenergetic images from spectral detector computed tomography facilitate washout assessment in arterially hyper-enhancing liver lesions. Eur Radiol. 2021;31(5):3468–77.
Article CAS PubMed Google Scholar
Kaga T, Noda Y, Mori T, Kawai N, Miyoshi T, Hyodo F, et al. Unenhanced abdominal low-dose CT reconstructed with deep learning-based image reconstruction: image quality and anatomical structure depiction. Jpn J Radiol. 2022;40(7):703–11.
Article CAS PubMed PubMed Central Google Scholar
Greffier J, Hamard A, Pereira F, Barrau C, Pasquier H, Beregi JP, et al. Image quality and dose reduction opportunity of deep learning image reconstruction algorithm for CT: a phantom study. Eur Radiol. 2020;30(7):3951–9.
Greffier J, Durand Q, Frandon J, Si-Mohamed S, Loisy M, de Oliveira F, et al. Improved image quality and dose reduction in abdominal CT with deep-learning reconstruction algorithm: a phantom study. Eur Radiol. 2023;33(1):699–710.
Article CAS PubMed Google Scholar
Mohammadinejad P, Mieto A, Yu S, Leng S, Guimaraes LS, Missert AD, et al. CT noise-reduction methods for lower-dose scanning: strengths and weaknesses of iterative reconstruction algorithms and new techniques. Radiographics. 2021;41(5):1493–508.
Koetzier LR, Mastrodicasa D, Szczykutowicz TP, van der Werf NR, Wang AS, Sandfort V, et al. Deep learning image reconstruction for CT: technical principles and clinical prospects. Radiology. 2023;306(3):e221257.
Jensen CT, Gupta S, Saleh MM, Liu X, Wong VK, Salem U, Qiao W, Samei E, Wagner-Bartak NA. Reduced-dose deep learning reconstruction for abdominal CT of liver metastases. Radiology. 2022;303(1):90–8.
Shehata MA, Saad AM, Kamel S, Stanietzky N, Roman-Colon AM, Morani AC, et al. Deep-learning CT reconstruction in clinical scans of the abdomen: a systematic review and meta-analysis. Abdom Radiol. 2023;48(8):2724–56.
Kiryu S, Akai H, Yasaka K, Tajima T, Kunimatsu A, Yoshioka N, et al. Clinical impact of deep learning reconstruction in MRI. Radiographics. 2023;43(6):e220133.
Afat S, Herrmann J, Almansour H, Benkert T, Weiland E, Hölldobler T, et al. Acquisition time reduction of diffusion-weighted liver imaging using deep learning image reconstruction. Diagn Interv Imaging. 2023;104(4):178–84.
Chaika M, Afat S, Wessling D, Afat C, Nickel D, Kannengiesser S, et al. Deep learning-based super-resolution gradient echo imaging of the pancreas: Improvement of image quality and reduction of
Comments (0)