The improvement of the in vitro plant regeneration in barley with the epigenetic modifier of histone acetylation, trichostatin A

Abrahamsson M, Valladares S, Merino I et al (2017) Degeneration pattern in somatic embryos of Pinus sylvestris L. In Vitro Cell Dev Biol Plant 53:86–96. https://doi.org/10.1007/s11627-016-9797-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aguado-Santacruz GA, Velázquez-Ordinola Á, Moreno-Gómez B et al (2011) Development of long-term and reliable in vitro plant regeneration systems for elite malting barley varieties: optimizing media formulation and explant selection. Afr J Biotechnol 10:19522–19533. https://doi.org/10.5897/AJB11.1736

Article  CAS  Google Scholar 

Alemanno L, Berthouly M, Michaux-Ferribre N (1996) Histology of somatic embryogenesis from floral tissues cocoa. Plant Cell Tissue Organ Cult 46:187–194. https://doi.org/10.1007/BF02307094

Article  Google Scholar 

Anjanappa RB, Gruissem W (2021) Current progress and challenges in crop genetic transformation. J Plant Physiol 261:1–13 https://doi.org/10.1016/j.jplph.2021.153411

Awada R, Lepelley M, Breton D et al (2023) Global transcriptome profiling reveals differential regulatory, metabolic and hormonal networks during somatic embryogenesis in Coffea arabica. BMC Genom 24:41–60. https://doi.org/10.1186/s12864-022-09098-z

Article  CAS  Google Scholar 

Awada R, Verdier D, Froger S et al (2020) An innovative automated active compound screening system allows high-throughput optimization of somatic embryogenesis in Coffea arabica. Sci Rep 10:810–824. https://doi.org/10.1038/s41598-020-57800-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bai B, Su YH, Yuan J, Zhang XS (2013) Induction of somatic embryos in arabidopsis requires local YUCCA expression mediated by the down-regulation of ethylene biosynthesis. Mol Plant 6:1247–1260. https://doi.org/10.1093/mp/sss154

Article  CAS  PubMed  Google Scholar 

Baik BK, Ullrich SE (2008) Barley for food: characteristics, improvement, and renewed interest. J Cereal Sci 48:233–242. https://doi.org/10.1016/J.JCS.2008.02.002

Article  CAS  Google Scholar 

Bartos PMC, Gomes HT, Gomes SM et al (2018) Histology of somatic embryogenesis in Coffea arabica L. Biologia (Bratisl) 73:1255–1265. https://doi.org/10.2478/s11756-018-0131-5

Article  CAS  Google Scholar 

Beier S, Himmelbach A, Colmsee C et al (2017) Construction of a map-based reference genome sequence for barley, Hordeum vulgare L. Sci Data 4. https://doi.org/10.1038/sdata.2017.44

Belide S, Zhou XR, Kennedy Y et al (2013) Rapid expression and validation of seed-specific constructs in transgenic LEC2 induced somatic embryos of Brassica napus. Plant Cell Tissue Organ Cult 113:543–553. https://doi.org/10.1007/s11240-013-0295-1

Article  CAS  Google Scholar 

Bidabadi SS, Mohan Jain S (2020) Cellular, molecular, and physiological aspects of in vitro plant regeneration. Plants 9:702–722

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bie XM, Dong L, Li XH et al (2020) Trichostatin A and sodium butyrate promotes plant regeneration in common wheat. Plant Signal Behav 15:1820681. https://doi.org/10.1080/15592324.2020.1820681

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bouamama B, Ben SA, Ben YF et al (2011) Somatic embryogenesis and organogenesis from mature caryopses of North African barley accession “Kerkena” (Hordeum vulgare L.). In Vitro Cell Dev Biol Plant 47:321–327. https://doi.org/10.1007/s11627-011-9357-4

Article  Google Scholar 

Boutilier K, Offringa R, Sharma VK et al (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14:1737–1749. https://doi.org/10.1105/tpc.001941.tissue

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brand A, Quimbaya M, Tohme J, Chavarriaga-Aguirre P (2019) Arabidopsis LEC1 and LEC2 orthologous genes are key regulators of somatic embryogenesis in cassava. Front Plant Sci 10. https://doi.org/10.3389/fpls.2019.00673

Braybrook SA, Stone SL, Park S et al (2006) Genes directly regulated by LEAFY COTYLEDON2 provide insight into the control of embryo maturation and somatic embryogenesis. PNAS 103:3468–3473. https://doi.org/10.1073/pnas.0511331103

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bykova IV, Lashina NM, Efimov VM et al (2017) Identification of 50 K Illumina-chip SNPs associated with resistance to spot blotch in barley. BMC Plant Biol 17. https://doi.org/10.1186/s12870-017-1198-9

Caeiro A, Caeiro S, Correia S, Canhoto J (2022) Induction of somatic embryogenesis in Tamarillo (Solanum betaceum Cav.) involves increases the endogenous auxin indole-3-acetic acid. Plants 11:1374–1391. https://doi.org/10.3390/plants11101347

Article  CAS  Google Scholar 

Cantalapiedra CP, García-Pereira MJ, Gracia MP et al (2017) Large differences in gene expression responses to drought and heat stress between elite barley cultivar scarlett and a Spanish landrace. Front Plant Sci 8:647–670. https://doi.org/10.3389/fpls.2017.00647

Article  PubMed  PubMed Central  Google Scholar 

Castillo AM, Valero-Rubira I, Burrell MÁ et al (2020) Trichostatin a affects developmental reprogramming of bread wheat microspores towards n embryogenic route. Plants 9:1–22. https://doi.org/10.3390/plants9111442

Article  CAS  Google Scholar 

Centeno ML, Rodriguez R, Berros B, Rodriguez A (1997) Endogenous hormonal content and somatic embryogenic capacity of Corylus avellana L. cotyledons. Plant Cell Rep 17:139–144

Article  CAS  PubMed  Google Scholar 

Chang S, Pikaard CS (2005) Transcript profiling in Arabidopsis reveals complex responses to global inhibition of DNA methylation and histone deacetylation. J Biol Chem 280:796–804. https://doi.org/10.1074/jbc.M409053200

Article  CAS  PubMed  Google Scholar 

Chang Y, Von Zitzewitz J, Hayes PM, Chen THH (2003) High frequency plant regeneration from immature embryos of an elite barley cultivar (Hordeum vulgare L. cv. Morex). Plant Cell Rep 21:733–738. https://doi.org/10.1007/s00299-003-0607-8

Article  CAS  PubMed  Google Scholar 

Chauhan M, Kothari SL (2004) Optimization of nutrient levels in the medium increases the efficiency of callus induction and plant regeneration in recalcitrant Indian barley (Hordeum vulgare L.) in vitro. In Vitro Cell Dev Biol Plant 40:520–527. https://doi.org/10.1079/IVP2004565

Article  CAS  Google Scholar 

Choi SH, Ahn WS, Lee MH et al (2023) Effects of TSA, NaB, Aza in Lactuca sativa L. protoplasts and effect of TSA in Nicotiana benthamiana protoplasts on cell division and callus formation. PLoS One 18:e0279627. https://doi.org/10.1371/journal.pone.0279627

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chow CN, Lee TY, Hung YC et al (2019) Plantpan3.0: a new and updated resource for reconstructing transcriptional regulatory networks from chip-seq experiments in plants. Nucleic Acids Res 47:1155–1163. https://doi.org/10.1093/nar/gky1081

Article  Google Scholar 

Dahleen LS, Bregitzer P (2002) An improved media system for high regeneration rates from barley immature embryo-derived callus cultures of commercial cultivars. Crop Sci 42:934–938. https://doi.org/10.2135/cropsci2002.9340

Article  Google Scholar 

Dawson IK, Russell J, Powell W et al (2015) Barley: a translational model for adaptation to climate change. New Phytol 206:913–931

Article  PubMed  Google Scholar 

Debernardi JM, Tricoli DM, Ercoli MF et al (2020) A GRF–GIF chimeric protein improves the regeneration efficiency of transgenic plants. Nat Biotechnol 38:1274–1279. https://doi.org/10.1038/s41587-020-0703-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deng W, Luo K, Li Z, Yang Y (2009) A novel method for induction of plant regeneration via somatic embryogenesis. Plant Sci 177:43–48. https://doi.org/10.1016/j.plantsci.2009.03.009

Article  CAS  Google Scholar 

Douchkov D, Lück S, Johrde A et al (2014) Discovery of genes affecting resistance of barley to adapted and non-adapted powdery mildew fungi. Genome Biol 15:518. https://doi.org/10.1186/s13059-014-0518-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dubois T, Guedira M, Dubois J, Vasseur J (1991) Direct somatic embryogenesis in leaves of Cichorimn A histological and SEM study of early stages. Protoplasma 162:120–127. https://doi.org/10.1007/BF02562555

Article  Google Scholar 

Eudes F, Acharya S, Laroche A et al (2003) A novel method to induce direct somatic embryogenesis, secondary embryogenesis and regeneration of fertile green cereal plants. Plant Cell Tissue Organ Cult 73:147–157. https://doi.org/10.1007/s11627-001-0067-1

Article  CAS  Google Scholar 

Fehér A (2015) Somatic embryogenesis — stress-induced remodeling of plant cell fate. Biochim Biophys Acta Gene Regul Mech 1849:385–402. https://doi.org/10.1016/j.bbagrm.2014.07.005

Article  CAS  Google Scholar 

Florez SL, Erwin RL, Maximova SN et al (2015) Enhanced somatic embryogenesis in Theobroma cacao using the homologous BABY BOOM transcription factor. BMC Plant Biol 15:121–134. https://doi.org/10.1186/s12870-015-0479-4

Article  PubMed  PubMed Central  Google Scholar 

Furumai R, Komatsu Y, Nishino N et al (2001) Potent histone deacetylase inhibitors built from trichostatin A and cyclic tetrapeptide antibiotics including trapoxin. PNAS 98:87–92

Article  CAS  PubMed  Google Scholar 

Gaj MD, Zhang S, Harada JJ, Lemaux PG (2005) Leafy cotyledon genes are essential for induction of somatic embryogenesis of Arabidopsis. Planta 222:977–988. https://doi.org/10.1007/s00425-005-0041-y

Article  CAS  PubMed  Google Scholar 

Ganeshan S, Weir BJ, Båga M et al (2006) Evaluation of the enhanced regeneration system for in vitro regeneration in barley. Can J Plant Sci 86:63–69. https://doi.org/10.4141/P05-055

Comments (0)

No login
gif