Liu Y, Wang X, Xu F, Li D, Yang H, Sun N, Fan YC, Yang X. Risk factors of chronic kidney disease in chronic hepatitis b:a hospital-based case- control study from china. J Clin Transl Hepatol. 2022;10(2):238–46.
Egger J, Gsxaner C, Pepe A, Li J. Medical deep learning – a systematic meta-review. Comput Methods and Prog Biomed. 2020;221:106874.
Castera L. Noninvasive methods to assess liver disease in patients with hepatitis b or c. Gastroenterology. 2012;142(6):1293–302.
Crossan C, Tsochatzis EA, Longworth L, Gurusamy K, Davidson B, Rodríguez-Perálvarez M, Mantzoukis K, O’Brien J, Thalassinos E, Papastergiou V, Burroughs A. Cost-effectiveness of non-invasive methods for assessment and monitor- ing of liver fibrosis and cirrhosis in patients with chronic liver disease: systematic review and economic evaluation. Health Technol Assess. 2015;19(9):1–410.
Kluwer, W.: Current opinion in gastroenterology. Curr Opin Gastroenterol. 2012;28(6):547–550.
Kremer S, Lersy F, De Sèze J, Ferré JC, Maamar A, Carsin-Nicol B, Collange O, Bonneville F, Adam G, Martin-Blondel G, Rafiq M. Brain mri findings in severe covid-19: a retrospective observational study. Radiology. 2020;297(2):E242–51.
Kandemirli SG, Dogan L, Sarikaya ZT, Kara S, Kocer N. Brain mri find- ings in patients in the intensive care unit with covid-19 infection. Radiology. 2020;297(1): 201697.
Woods JC, Wild JM, Wielpütz MO, Clancy JP, Hatabu H, Kauczor H-U, van Beek EJR, Altes TA. Current state of the art mri for the longitudinal assessment of cystic fibrosis. J Magnet Res Imag. 2019;52(5):1306–20.
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. Comput Sci. 2014. https://doi.org/10.48550/arXiv.1409.1556.
Tan M, Le QV (2021) Efficientnetv2: Smaller models and faster training. International conference on machine learning, 2021;10096–10106.
Khan A, Sohail A, Zahoora U, Qureshi AS. A survey of the recent architec- tures of deep convolutional neural networks. Artif Intell Rev. 2019;53:5455–516.
Gore JC. Artificial intelligence in medical imaging. Magnet Res Imag. 2019;68:A1–4.
Debelee TG, Schwenker F, Ibenthal A, Yohannes D. Survey of deep learning in breast cancer image analysis. Evol Syst. 2020;11(1):143–63.
Gupta S, Gupta M (2021) Deep learning for brain tumor segmentation using magnetic resonance images. In: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)
Lockard JS, Wyler AR. The influence of attending on seizure activity in epileptic monkeys. Epilepsia. 2010;20(2):157–68.
Huang S, Lee F, Miao R, Si Q, Chen Q. A deep convolutional neural network architecture for interstitial lung disease pattern classification. Med Biol Eng Comput. 2020;58(5):725–37.
Xiang K, Jiang B, Shang D. The overview of the deep learning integrated into the medical imaging of liver: a review. Hepatol Int. 2021;15:868–80.
Mahesh B.: Machine learning algorithms-a review. (IJSR). 2020;9(1):381–386.
Chan H, Hadjiiski LM, Samala RK. Computer-aided diagnosis in the era of deep learning. Med Phys. 2020. https://doi.org/10.1002/mp.13764.
Islam MM, Wu CC, Poly TN, Nguyen PAA, Li YCJ. Prediction of fatty liver disease using machine learning algorithms. Comput Methods Prog Biomed. 2019;170:23–9.
Li W, Huang Y, Zhuang BW, Liu GJ, Hu HT, Li X, Liang JY, Wang Z, Huang XW, Zhang, C.Q.a. Multiparametric ultrasomics of significant liver fibrosis: a machine learning-based analysis. Eur Radiol. 2019;29(3):1496–506.
Ayeldeen H, Shaker O, Ayeldeen G, Anwar KM (2016) Prediction of liver fibrosis stages by machine learning model: A decision tree approach. In: Third World Conference on Complex Systems, IEEE
House MJ, Bangma SJ, Thomas M, Gan EK, Ayonrinde OT, Adams LA, Olynyk JK, Pierre TGS. Texture-based classification of liver fibrosis using mri. J Magnet Res Imag. 2013;41(2):322–8.
Barry B, Buch K, Soto JA, Jara H, Anderson SW. Quantifying liver fibro- sis through the application of texture analysis to diffusion weighted imaging. Magn Reson Imag. 2013;32(1):84–90.
Sheth D, Giger ML. Artificial intelligence in the interpretation of breast cancer on mri. J Magnet Res Imag. 2019;51(5):1310–24.
Yasaka K, Akai H, Kunimatsu A, Abe O, Kiryu S. Deep learning for staging liver fibrosis on ct: a pilot study. Eur Radiol. 2018;28(11):4578–85.
Chen M, Zhang B, Topatana W, Cao J, Cai X. Classification and mutation prediction based on histopathology he images in liver cancer using deep learning. npj Precis Oncol. 2020;4(1):14.
Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2015) Rethinking the inception architecture for computer vision. Proceedings of the IEEE conference on computer vision and pattern recognition. 2016;2818–2826.
Zhen SH, Cheng M, Tao YB, Wang YF, Cai XJ. Deep learning for accu- rate diagnosis of liver tumor based on magnetic resonance imaging and clinical data. Front Oncol. 2020. https://doi.org/10.3389/fonc.2020.00680.
Das B, Toraman S. Deep transfer learning for automated liver cancer gene recognition using spectrogram images of digitized dna sequences. Biomed Signal Process Control. 2022;72:103317.
Rao Y, Zhao W, Zhu Z, Lu J, Zhou J. Global filter networks for image classification. Adv Neural Inform Process Syst. 2021;34:980–93.
Ding X, Zhang X, Zhou Y, Han J, Ding G, Sun J (2022) Scaling up your kernels to 31x31: Revisiting large kernel design in cnns. arXiv e-prints
Chen, Y., Dai, X., Liu, M., Chen, D., Yuan, L., Liu, Z.: Dynamic convolution: Attention over convolution kernels. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020;11030–11039.
Zhu Z, Xu, M., Bai, S., Huang, T., Bai, X., Zhu, Z.: Asymmetric Non-local Neural Networks for Semantic Segmentation. Proceedings of the IEEE/CVF international conference on computer vision. 2019;593–602.
Wu, H., Xiao, B., Codella, N., Liu, M., Dai, X., Yuan, L., Zhang, L.: Cvt: Introducing convolutions to vision transformers. Proceedings of the IEEE/CVF international conference on computer vision. 2021
Srinivas, A., Lin, T.Y., Parmar, N., Shlens, J., Vaswani, A.: Bottleneck trans- formers for visual recognition. Proceedings of the IEEE/CVF international conference on computer vision and pattern recognition. 2021;16519–16529
Ott, M., Edunov, S., Grangier, D., Auli, M.: Scaling neural machine translation. International conference on machine learning. 2018;3956–3965.
Wen Y, Zhang K, Li Z, Qiao Y. A discriminative feature learning approach for deep face recognition. In: Leibe B, Matas J, Sebe N, Welling M, editors. Computer Vision – ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part VII. Cham: Springer; 2016.
Ranjan R, Castillo CD, Chellappa R (2017) L2-constrained softmax loss for discriminative face verification. arXiv preprint arXiv:1703.09507.
Wang F, Xiang X, Cheng J, Yuille AL (2017) Normface: l2 hypersphere embedding for face verification. arXiv
Deng, J., Guo, J., Zafeiriou, S.: Arcface: Additive angular margin loss for deep face recognition. 2019;4690–4699.
Van Horn, G., Cole, E., Beery, S., Wilber, K., Belongie, S., Mac Aodha, O.: Benchmarking representation learning for natural world image collections. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021;12884–12893
Wang H, Wang Y, Zhou Z, Ji X, Gong D, Zhou J, Li Z, Liu W (2018) Cos- face: Large margin cosine loss for deep face recognition. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Wang F, Cheng J, Liu W, Liu H. Additive margin softmax for face verification. IEEE Signal Process Lett. 2018;25(7):926–30.
Rao Y, Zhao W, Tang Y, Zhou J, Lim S-N, Lu J (2022) HorNet: Effi- cient high-order spatial interactions with recursive gated convolutions (2022) arXiv:2207.14284 [cs.CV]
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Attention is all you need. arXiv
Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D (2017) Grad-cam: Visual explanations from deep networks via gradient-based localiza- tion. In: IEEE International Conference on Computer Vision (2017)
Liu W, Wen Y, Yu Z, Yang M (2016) Large-margin softmax loss for convolutional neural networks. JMLR.org
Lin TY, Goyal P, Girshick R, He K, Dollar P (2017) Focal loss for dense object detection. IEEE
Meng, Q., Zhao, S., Huang, Z., Zhou, F.: Magface: A universal representation for face recognition and quality assessment. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 2021;14225–14234.
Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, Ferrell LD, Liu Y-C, Torbenson MS, Unalp-Arida A, Yeh M, McCullough AJ, Sanyal AJ. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41(6):1313–21.
Niu S, Liu Y, Wang J, Song H. A decade survey of transfer learning. IEEE Trans Artif Intell. 2020;1(2):151–66.
Deng J.: A large-scale hierarchical image database. Proc. of IEEE Computer Vision and Pattern Recognition. 2009
Sompong C, Wongthanavasu S (2014) Mri brain tumor segmentation using glcm cellular automata-based texture feature. In: Computer Science Engineering Conference. 192–197
Saihood A, Karshenas H, Nilchi ARN. Deep fusion of gray level co- occurrence matrices for lung nodule classification. PLoS ONE. 2022;17(9):e0274516.
Loshchilov I, Hutter F (2017) Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101.
Davies WS. Digital image processing methods. Optics and Lasers in Eng. 1994;4:250–1.
Comments (0)