Machine learning and deep learning enabled age estimation on medial clavicle CT images

Pattamapaspong N, Madla C, Mekjaidee K, Namwongprom S (2015) Age estimation of a Thai population based on maturation of the medial clavicular epiphysis using computed tomography. Forensic Sci Int 246(123):e1–e5. https://doi.org/10.1016/j.forsciint.2014.10.044

Article  Google Scholar 

Houpert T, Rérolle C, Savall F, Telmon N, Saint-Martin P (2016) Is a CT-scan of the medial clavicle epiphysis a good exam to attest to the 18-year threshold in forensic age estimation? Forensic Sci Int 260:103.e1-.e3. https://doi.org/10.1016/j.forsciint.2015.12.007

Article  PubMed  Google Scholar 

Torimitsu S, Makino Y, Saitoh H et al (2019) Age estimation based on maturation of the medial clavicular epiphysis in a Japanese population using multidetector computed tomography. Leg Med (Tokyo) 37:28–32. https://doi.org/10.1016/j.legalmed.2018.12.003

Article  PubMed  Google Scholar 

Wittschieber D, Ottow C, Vieth V et al (2015) Projection radiography of the clavicle: still recommendable for forensic age diagnostics in living individuals? Int J Legal Med 129:187–193. https://doi.org/10.1007/s00414-014-1067-0

Article  PubMed  Google Scholar 

Schmeling A, Schulz R, Reisinger W, Muhler M, Wernecke KD, Geserick G (2004) Studies on the time frame for ossification of the medial clavicular epiphyseal cartilage in conventional radiography. Int J Legal Med 118:5–8. https://doi.org/10.1007/s00414-003-0404-5

Article  PubMed  Google Scholar 

Kellinghaus M, Schulz R, Vieth V, Schmidt S, Pfeiffer H, Schmeling A (2010) Enhanced possibilities to make statements on the ossification status of the medial clavicular epiphysis using an amplified staging scheme in evaluating thin-slice CT scans. Int J Legal Med 124:321–325. https://doi.org/10.1007/s00414-010-0448-2

Article  PubMed  Google Scholar 

Shedge R, Kanchan T, Garg PK et al (2020) Computed tomographic analysis of medial clavicular epiphyseal fusion for age estimation in Indian population. Leg Med (Tokyo) 46:101735. https://doi.org/10.1016/j.legalmed.2020.101735

Article  PubMed  Google Scholar 

De Tobel J, Bauwens J, Parmentier GIL et al (2020) Magnetic resonance imaging for forensic age estimation in living children and young adults: a systematic review. Pediatr Radiol 50:1691–1708. https://doi.org/10.1007/s00247-020-04709-x

Article  PubMed  Google Scholar 

Ekizoglu O, Hocaoglu E, Inci E, Can IO, Aksoy S, Sayin I (2015) Estimation of forensic age using substages of ossification of the medial clavicle in living individuals. Int J Legal Med 129:1259–1264. https://doi.org/10.1007/s00414-015-1234-y

Article  PubMed  Google Scholar 

Gurses MS, Inanir NT, Gokalp G, Fedakar R, Tobcu E, Ocakoglu G (2016) Evaluation of age estimation in forensic medicine by examination of medial clavicular ossification from thin-slice computed tomography images. Int J Legal Med 130:1343–1352. https://doi.org/10.1007/s00414-016-1408-2

Article  PubMed  Google Scholar 

Fan F, Dong X, Wu X et al (2020) An evaluation of statistical models for age estimation and the assessment of the 18-year threshold using conventional pelvic radiographs. Forensic Sci Int 314:110350. https://doi.org/10.1016/j.forsciint.2020.110350

Article  PubMed  Google Scholar 

Peng J, Han H, Yi Y, Huang H, Xie L (2022) Machine learning and deep learning modeling and simulation for predicting PM2.5 concentrations. Chemosphere 308:136353. https://doi.org/10.1016/j.chemosphere.2022.136353

Article  CAS  PubMed  Google Scholar 

Fan F, Tu M, Li R et al (2020) Age estimation by multidetector computed tomography of cranial sutures in Chinese male adults. Am J Phys Anthropol 171:550–558. https://doi.org/10.1002/ajpa.23998

Article  PubMed  Google Scholar 

Xu C, Qu H, Wang G et al (2015) A novel strategy for forensic age prediction by DNA methylation and support vector regression model. Sci Rep 5:17788. https://doi.org/10.1038/srep17788

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shen S, Liu Z, Wang J, Fan L, Ji F, Tao J (2021) Machine learning assisted Cameriere method for dental age estimation. BMC Oral Health 21:641. https://doi.org/10.1186/s12903-021-01996-0

Article  PubMed  PubMed Central  Google Scholar 

Wesp P, Sabel BO, Mittermeier A et al (2023) Automated localization of the medial clavicular epiphyseal cartilages using an object detection network: a step towards deep learning-based forensic age assessment. Int J Legal Med. https://doi.org/10.1007/s00414-023-02958-7

Kengkard P, Choovuthayakorn J, Mahakkanukrauh C et al (2023) Convolutional neural network of age-related trends digital radiographs of medial clavicle in a Thai population: a preliminary study. Anat Cell Biol 56:86–93. https://doi.org/10.5115/acb.22.205

Article  PubMed  PubMed Central  Google Scholar 

Tozakidou M, Meister RL, Well L et al (2021) CT of the medial clavicular epiphysis for forensic age estimation: hands up? Int J Legal Med 135:1581–1587. https://doi.org/10.1007/s00414-021-02516-z

Article  PubMed  PubMed Central  Google Scholar 

Dai Z, Liu H, Le QV, Tan M. (2021) CoAtNet: Marrying Convolution and Attention for All Data Sizes. pp. arXiv:2106.04803.

Kellinghaus M, Schulz R, Vieth V, Schmidt S, Schmeling A (2010) Forensic age estimation in living subjects based on the ossification status of the medial clavicular epiphysis as revealed by thin-slice multidetector computed tomography. Int J Legal Med 124:149–154. https://doi.org/10.1007/s00414-009-0398-8

Article  PubMed  Google Scholar 

Wittschieber D, Schulz R, Vieth V et al (2014) The value of sub-stages and thin slices for the assessment of the medial clavicular epiphysis: a prospective multi-center CT study. Forensic Sci Med Pathol 10:163–169. https://doi.org/10.1007/s12024-013-9511-x

Article  PubMed  Google Scholar 

Franklin D, Flavel A (2015) CT evaluation of timing for ossification of the medial clavicular epiphysis in a contemporary Western Australian population. Int J Legal Med 129:583–594. https://doi.org/10.1007/s00414-014-1116-8

Article  PubMed  Google Scholar 

Ekizoglu O, Hocaoglu E, Inci E et al (2015) Forensic age estimation by the Schmeling method: computed tomography analysis of the medial clavicular epiphysis. Int J Legal Med 129:203–210. https://doi.org/10.1007/s00414-014-1121-y

Article  PubMed  Google Scholar 

De Tobel J, Hillewig E, van Wijk M et al (2020) Staging clavicular development on MRI: pitfalls and suggestions for age estimation. J Magn Reson Imaging 51:377–388. https://doi.org/10.1002/jmri.26889

Article  PubMed  Google Scholar 

Mostad P, Schmeling A, Tamsen F (2022) Mathematically optimal decisions in forensic age assessment. Int J Legal Med 136:765–776. https://doi.org/10.1007/s00414-021-02749-y

Article  PubMed  Google Scholar 

Larson DB, Chen MC, Lungren MP, Halabi SS, Stence NV, Langlotz CP (2018) Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs. Radiology 287:313–322. https://doi.org/10.1148/radiol.2017170236

Article  PubMed  Google Scholar 

Lee H, Tajmir S, Lee J et al (2017) Fully automated deep learning system for bone age assessment. J Digit Imaging 30:427–441. https://doi.org/10.1007/s10278-017-9955-8

Article  PubMed  PubMed Central  Google Scholar 

Spampinato C, Palazzo S, Giordano D, Aldinucci M, Leonardi R (2017) Deep learning for automated skeletal bone age assessment in X-ray images. Med Image Anal 36:41–51. https://doi.org/10.1016/j.media.2016.10.010

Article  CAS  PubMed  Google Scholar 

Fan F, Ke W, Dai X et al (2023) Semi-supervised automatic dental age and sex estimation using a hybrid transformer model. Int J Legal Med 137:721–731. https://doi.org/10.1007/s00414-023-02956-9

Article  PubMed  Google Scholar 

Lu T, Diao Y-r, Tang X-e et al (2023) Deep learning enables automatic adult age estimation based on CT reconstruction images of the costal cartilage. Eur Radiol. https://doi.org/10.1007/s00330-023-09761-3

Chen Y, Wan Y, Pan F (2023) Enhancing multi-disease diagnosis of chest X-rays with advanced deep-learning networks in real-world data. J Digit Imaging:1–16. https://doi.org/10.1007/s10278-023-00801-4

Rudolf E, Kramer J, Schmidt S, Vieth V, Winkler I, Schmeling A (2019) Anatomic shape variants of extremitas sternalis claviculae as collected from sternoclavicular thin-slice CT-studies of 2820 male borderline-adults. Int J Legal Med 133:1517–1528. https://doi.org/10.1007/s00414-019-02065-6

Article  PubMed  Google Scholar 

Scharte P, Vieth V, Schulz R et al (2017) Comparison of imaging planes during CT-based evaluation of clavicular ossification: a multi-center study. Int J Legal Med 131:1391–1397. https://doi.org/10.1007/s00414-017-1615-5

Article  PubMed  Google Scholar 

Vieth V, Schulz R, Brinkmeier P, Dvorak J, Schmeling A (2014) Age estimation in U-20 football players using 3.0 tesla MRI of the clavicle. Forensic Sci Int 241:118–122. https://doi.org/10.1016/j.forsciint.2014.05.008

Article  PubMed  Google Scholar 

Schmidt S, Ottow C, Pfeiffer H et al (2017) Magnetic resonance imaging-based evaluation of ossification of the medial clavicular epiphysis in forensic age assessment. Int J Legal Med 131:1665–1673. https://doi.org/10.1007/s00414-017-1676-5

Article  CAS  PubMed  Google Scholar 

Hillewig E, Degroote J, Van der Paelt T et al (2013) Magnetic resonance imaging of the sternal extremity of the clavicle in forensic age estimation: towards more sound age estimates. Int J Legal Med 127:677–689. https://doi.org/10.1007/s00414-012-0798-z

Article  CAS  PubMed  Google Scholar 

Widek T, De Tobel J, Ehammer T, Genet P (2023) Forensic age estimation in males by MRI based on the medial epiphysis of the clavicle. Int J Legal Med 137:679–689. https://doi.org/10.1007/s00414-022-02924-9

Article  PubMed  Google Scholar 

Štern D, Payer C, Giuliani N, Urschler M (2019) Automatic age estimation and majority age classification from multi-factorial MRI data. IEEE J Biomed Health Inform 23:1392–1403. https://doi.org/10.1109/JBHI.2018.2869606

Article  PubMed 

Comments (0)

No login
gif