Development of Phormia regina at seven constant temperatures for minimum postmortem interval estimation

Catts EP (1992) Problem in estimating the postmortem interval in death investigations. J Agric Entomol 9:245–255. https://doi.org/10.1016/0020-7322(92)90032-I

Article  Google Scholar 

Amendt J, Campobasso CP, Gaudry E et al (2007) Best practice in forensic entomology—standards and guidelines. Int J Legal Med 121:90–104. https://doi.org/10.1007/s00414-006-0086-x

Article  PubMed  Google Scholar 

Al-Mesbah H, Al-Osaimi Z, El-Azazy OME (2011) Forensic entomology in Kuwait: the first case report. Forensic Sci Int 206:e25–e26. https://doi.org/10.1016/j.forsciint.2010.07.013

Article  PubMed  Google Scholar 

Martins G, dos Santos WE, Creão-Duarte AJ et al (2013) Estimativa do intervalo pós-morte em um canino (Canis lupus familiaris Linnaeus 1758) pela entomologia forense em Cabedelo-PB, Brasil: relato de caso. Arq Bras Med Vet Zootec 65:1107–1110. https://doi.org/10.1590/S0102-09352013000400024

Article  Google Scholar 

Wang M, Chu J, Wang Y et al (2019) Forensic entomology application in China: four case reports. J Forensic Leg Med 63:40–47. https://doi.org/10.1016/j.jflm.2019.03.001

Article  PubMed  Google Scholar 

Goff ML, Odom CB (1987) Forensic entomology in the Hawaiian Islands: three case studies. Am J Forensic Med Pathol 8:45–50. https://doi.org/10.1097/00000433-198703000-00011

Article  PubMed  CAS  Google Scholar 

Amendt J, Richards CS, Campobasso CP et al (2011) Forensic entomology: applications and limitations. Forensic Sci Med Pathol 7:379–392. https://doi.org/10.1007/s12024-010-9209-2

Article  PubMed  CAS  Google Scholar 

Campobasso CP, Introna F (2001) The forensic entomologist in the context of the forensic pathologist’s role. Forensic Sci Int 120:132–139. https://doi.org/10.1016/S0379-0738(01)00425-X

Article  PubMed  CAS  Google Scholar 

Reiter C, Hajek P (1984) Age-dependent changes in the intestinal contents of blowfly maggots–a study method in the framework of forensic determination of the time of death. Z Rechtsmed 92:39–45. https://doi.org/10.1007/bf02116374

Article  PubMed  CAS  Google Scholar 

Grassberger M, Reiter C (2001) Effect of temperature on Lucilia sericata (Diptera: Calliphoridae) development with special reference to the isomegalen- and isomorphen-diagram. Forensic Sci Int 120:32–36. https://doi.org/10.1016/S0379-0738(01)00413-3

Article  PubMed  CAS  Google Scholar 

Wang Y, Wang J, Wang Z, Tao L (2017) Insect succession on pig carcasses using different exposure time - a preliminary study in Guangzhou, China. J Forensic Leg Med 52:24–29. https://doi.org/10.1016/j.jflm.2017.08.002

Article  PubMed  CAS  Google Scholar 

Wang Y, Hu G, Zhang Y et al (2019) Development of Muscina stabulans at constant temperatures with implications for minimum postmortem interval estimation. Forensic Sci Int 298:71–79. https://doi.org/10.1016/j.forsciint.2019.02.051

Article  PubMed  Google Scholar 

Lecheta MC, Thyssen PJ, Moura MO (2015) The effect of temperature on development of Sarconesia chlorogaster, a blowfly of forensic importance. Forensic Sci Med Pathol 11:538–543. https://doi.org/10.1007/s12024-015-9727-z

Article  PubMed  Google Scholar 

Thomas JK, Sanford MR, Longnecker M, Tomberlin JK (2016) Effects of temperature and tissue type on the development of Megaselia scalaris (Diptera: Phoridae). J Med Entomol 53:519–525. https://doi.org/10.1093/jme/tjw019

Article  PubMed  Google Scholar 

Duarte ML, Queiroz MM (2022) Development and intrapuparial characterization of Hydrotaea aenescens (Diptera: Muscidae) raised at different temperatures under laboratory conditions. J Med Entomol 59:1507–1518. https://doi.org/10.1093/jme/tjac066

Article  PubMed  Google Scholar 

Gruszka J, Matuszewski S (2022) Temperature models of development for Necrodes littoralis (L.) (Coleoptera: Silphidae), a carrion beetle of forensic importance in the Palearctic region. Sci Rep 12:9689. https://doi.org/10.1038/s41598-022-13901-y

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gomes L, Gomes G, Oliveira HG et al (2006) Influence of photoperiod on body weight and depth of burrowing in larvae of Chrysomya megacephala (Fabricius) (Diptera, Calliphoridae) and implications for forensic entomology. Rev Bras Entomol 50:76–79. https://doi.org/10.1590/S0085-56262006000100011

Article  Google Scholar 

Fisher ML, Higley LG, Foster JE (2015) The influence of photoperiod on development rates of three species of forensically important blow flies. J Insect Sci 15:153. https://doi.org/10.1093/jisesa/iev133

Article  Google Scholar 

Bauer AM, Bauer A, Tomberlin JK (2020) Effects of photoperiod on the development of forensically important blow fly Chrysomya rufifacies (Diptera: Calliphoridae). J Med Entomol 57:1382–1389. https://doi.org/10.1093/jme/tjaa058

Article  PubMed  Google Scholar 

Harnden LM, Tomberlin JK (2016) Effects of temperature and diet on black soldier fly, Hermetia illucens (L.) (Diptera: Stratiomyidae), development. Forensic Sci Int 266:109–116. https://doi.org/10.1016/j.forsciint.2016.05.007

Article  PubMed  Google Scholar 

Bauer A, Bauer AM, Tomberlin JK (2020) Impact of diet moisture on the development of the forensically important blow fly Cochliomyia macellaria (Fabricius) (Diptera: Calliphoridae). Forensic Sci Int 312:110333. https://doi.org/10.1016/j.forsciint.2020.110333

Article  PubMed  CAS  Google Scholar 

Rogers EKB, Franklin D, Voss SC (2020) Dietary effects on the development of Calliphora dubia and Chrysomya rufifacies (Diptera: Calliphoridae): implications for postmortem interval. J Med Entomol 58:79–87. https://doi.org/10.1093/jme/tjaa142

Article  CAS  Google Scholar 

Qubaiová J, Jakubec P, Montoya-Molina S et al (2021) Influence of diet on development and survival of Thanatophilus rugosus (Coleoptera: Silphidae). J Med Entomol 58:2124–2129. https://doi.org/10.1093/jme/tjab141

Article  PubMed  Google Scholar 

Zajac BK, Martin-Vega D, Feddern N et al (2016) Molecular identification and phylogenetic analysis of the forensically important family Piophilidae (Diptera) from different European locations. Forensic Sci Int 259:77–84. https://doi.org/10.1016/j.forsciint.2015.12.024

Article  PubMed  CAS  Google Scholar 

Bishopp FC (1915) Flies which cause myiasis in man and animals—some aspects of the problem. J Econ Entomol 8:317–329. https://doi.org/10.1093/jee/8.3.317

Article  Google Scholar 

Kamal AS (1958) Comparative study of thirteen species of Sarcosaprophagous Calliphoridae and Sarcophagidae (Diptera) I. bionomics. Ann Entomol Soc Am 51:261–271. https://doi.org/10.1093/aesa/51.3.261

Article  Google Scholar 

Núñez-Vázquez C, Tomberlin JK, Cantú-Sifuentes M, García-Martínez O (2013) Laboratory development and field validation of Phormia regina (Diptera: Calliphoridae). J Med Entomol 50:252–260. https://doi.org/10.1603/ME12114

Article  PubMed  Google Scholar 

Greenberg B (1991) Flies as forensic indicators. J Med Entomol 28:565–577. https://doi.org/10.1093/jmedent/28.5.565

Article  PubMed  CAS  Google Scholar 

Anderson G (2000) Minimum and maximum development rates of some forensically important Calliphoridae (Diptera). J Forensic Sci 45:824–832. https://doi.org/10.1520/JFS14778J

Article  PubMed  CAS  Google Scholar 

Byrd JH, Allen JC (2001) The development of the black blow fly, Phormia regina (Meigen). Forensic Sci Int 120:79–88. https://doi.org/10.1016/S0379-0738(01)00431-5

Article  PubMed  CAS  Google Scholar 

Greenberg B (1985) Forensic entomology: case studies. Bull Entomol Soc Am 31:25–28. https://doi.org/10.1093/besa/31.4.25

Article  Google Scholar 

Bajerlein D, Taberski D, Matuszewski S (2018) Estimation of postmortem interval (PMI) based on empty puparia of Phormia regina (Meigen) (Diptera: Calliphoridae) and third larval stage of Necrodes littoralis (L.) (Coleoptera: Silphidae) – advantages of using different PMI indicators. J Forensic Leg Med 55:95–98. https://doi.org/10.1016/j.jflm.2018.02.008

Article  PubMed  CAS  Google Scholar 

Dove WE (1937) Myiasis of man. J Econ Entomol 30:29–39. https://doi.org/10.1093/jee/30.1.29

Article  Google Scholar 

Baer WS (2011) The classic: the treatment of chronic osteomyelitis with the maggot (larva of the blow fly). Clin Orthop 469:920–944. https://doi.org/10.1007/s11999-010-1416-3

Article  PubMed  Google Scholar 

Cushing EC, Parish HE (1938) Seasonal variations in the abundance of Cochliomyia spp., Phormia spp.* and other flies in menard county, Tex.**. J Econ Entomol 31:764–769. https://doi.org/10.1093/jee/31.6.764

Article  Google Scholar 

Weidner LM, Jennings DE, Tomberlin JK, Hamilton GC (2015) Seasonal and geographic variation in biodiversity of forensically important blow flies (Diptera: Calliphoridae) in New Jersey, USA. J Med Entomol 52:937–946. https://doi.org/10.1093/jme/tjv104

Article  PubMed  CAS  Google Scholar 

Higley L, Haskell N, Huntington T, Roe A (2014) Establishing blow fly development and sampling procedures to estimate postmortem intervals. Bur Justice Stat

Google Scholar 

Melvin R (1934) Incubation period of eggs of certain muscoid flies at different constant temperatures. Ann Entomol Soc Am 27:406–410. https://doi.org/10.1093/aesa/27.3.406

Comments (0)

No login
gif