Methodological approaches, challenges, and opportunities in the application of Mendelian randomisation to lifecourse epidemiology: A systematic literature review

Liu S, Jones RN, Glymour MM. Implications of lifecourse epidemiology for research on determinants of adult disease. Public Health Rev. 2010;32(2):489–511.

Article  PubMed  Google Scholar 

Kuh D, Ben-Shlomo Y, Lynch J, Hallqvist J, Power C. Life course epidemiology. J Epidemiol Community Health. 2003;57(10):778.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lynch J, Davey Smith G. A life course approach to chronic disease epidemiology. Annu Rev Public Health. 2004;26(1):1–35.

Article  Google Scholar 

Davey Smith G. Assessing intrauterine influences on offspring health outcomes: can epidemiological studies yield robust findings? Basic Clin Pharmacol Toxicol. 2008;102(2):245–56.

Article  Google Scholar 

Santos S, Zugna D, Pizzi C, Richiardi L. Sources of confounding in life course epidemiology. J Dev Orig Health Dis. 2019;10(3):299–305.

Article  CAS  PubMed  Google Scholar 

Davey Smith G, Leary S, Ness A, Lawlor DA. Challenges and novel approaches in the epidemiological study of early life influences on later disease. Adv Exp Med Biol. 2009;646:1–14.

Article  PubMed  Google Scholar 

Lawlor D, Richmond R, Warrington N, McMahon G, Davey Smith G, Bowden J, et al. Using Mendelian randomization to determine causal effects of maternal pregnancy (intrauterine) exposures on offspring outcomes: sources of bias and methods for assessing them. Wellcome Open Res. 2017;2:11.

Article  PubMed  Google Scholar 

Kemp JP, Sayers A, Smith GD, Tobias JH, Evans DM. Using Mendelian randomization to investigate a possible causal relationship between adiposity and increased bone mineral density at different skeletal sites in children. Int J Epidemiol. 2016;45(5):1560–72.

Article  PubMed  PubMed Central  Google Scholar 

Burgess S, Davey Smith G, Davies NM, Dudbridge F, Gill D, Glymour MM, et al. Guidelines for performing Mendelian randomization investigations. Wellcome Open Res. 2019;4:186.

Article  PubMed  Google Scholar 

Kivimäki M, Lawlor DA, Davey Smith G, Eklund C, Hurme M, Lehtimäki T, et al. Variants in the CRP gene as a measure of lifelong differences in average C-reactive protein levels: the cardiovascular risk in young finns study, 1980–2001. Am J Epidemiol. 2007;166(7):760–4.

Article  PubMed  Google Scholar 

Davey Smith G, Ebrahim S. ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol. 2003;32(1):1–22.

Article  Google Scholar 

Morris TT, Heron J, Sanderson ECM, Davey Smith G, Didelez V, Tilling K. Interpretation of Mendelian randomization using a single measure of an exposure that varies over time. Int J Epidemiol. 2022;139:121.

Google Scholar 

Richardson TG, Sanderson E, Elsworth B, Tilling K, Davey Smith G. Use of genetic variation to separate the effects of early and later life adiposity on disease risk: mendelian randomisation study. BMJ. 2020;369:m1203.

Article  PubMed  PubMed Central  Google Scholar 

Warrington NM, Beaumont RN, Horikoshi M, Day FR, Helgeland Ø, Laurin C, et al. Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors. Nat Genet. 2019;51(5):804–14.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sanderson E, Richardson TG, Morris TT, Tilling K, Davey Smith G. Estimation of causal effects of a time-varying exposure at multiple time points through multivariable mendelian randomization. PLoS Genet. 2022;18(7):e1010290.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Skrivankova VW, Richmond RC, Woolf BAR, Davies NM, Swanson SA, VanderWeele TJ, et al. Strengthening the reporting of observational studies in epidemiology using mendelian randomisation (STROBE-MR): explanation and elaboration. BMJ. 2021;375:n2233.

Article  PubMed  PubMed Central  Google Scholar 

Skrivankova VW, Richmond RC, Woolf BAR, Yarmolinsky J, Davies NM, Swanson SA, et al. Strengthening the reporting of observational studies in epidemiology using mendelian randomization: the STROBE-MR statement. JAMA. 2021;326(16):1614–21.

Article  PubMed  Google Scholar 

Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535.

Article  PubMed  PubMed Central  Google Scholar 

Ben-Shlomo Y, Mishra G, Kuh D. Life Course Epidemiology. In: Ahrens W, Pigeot I, editors. Handbook of Epidemiology. New York: Springer; 2014. p. 1521–49.

Chapter  Google Scholar 

Cheng TS, Day FR, Lakshman R, Ong KK. Association of puberty timing with type 2 diabetes: a systematic review and meta-analysis. PLoS Med. 2020;17(1):e1003017.

Article  PubMed  PubMed Central  Google Scholar 

Spiga F, Gibson M, Dawson S, Davey Smith G, Munafò MR, Higgins JP. Tools for the assessment of quality and risk of bias in Mendelian randomization studies: a systematic review. medRxiv. 2021:2021.10.21.21265126.

Cao Y, Rajan SS, Wei P. Mendelian randomization analysis of a time-varying exposure for binary disease outcomes using functional data analysis methods. Genet Epidemiol. 2016;40(8):744–55.

Article  PubMed  PubMed Central  Google Scholar 

Labrecque JA, Swanson SA. Interpretation and potential biases of mendelian randomization estimates with time-varying exposures. Am J Epidemiol. 2019;188(1):231–8.

Article  PubMed  Google Scholar 

Moen G-H, Brumpton B, Willer C, Åsvold BO, Birkeland KI, Wang G, et al. Mendelian randomization study of maternal influences on birthweight and future cardiometabolic risk in the HUNT cohort. Nat Commun. 2020;11(1):5404.

Article  CAS  PubMed  Google Scholar 

Shi J, Swanson SA, Kraft P, Rosner B, De Vivo I, Hernán MA. Instrumental variable estimation for a time-varying treatment and a time-to-event outcome via structural nested cumulative failure time models. BMC Med Res Methodol. 2021;21(1):258.

Article  PubMed  PubMed Central  Google Scholar 

D’Urso S, Wang G, Hwang L-D, Moen G-H, Warrington NM, Evans DM. A cautionary note on using Mendelian randomization to examine the barker hypothesis and developmental origins of health and disease (DOHaD). J Dev Orig Health Dis. 2021;12(5):688–93.

Article  PubMed  Google Scholar 

Labrecque JA, Swanson SA. Age-varying genetic associations and implications for bias in Mendelian randomization. medRxiv. 2021:2021.04.28.21256235.

Shi J, Swanson SA, Kraft P, Rosner B, De Vivo I, Hernán MA. Mendelian randomization with repeated measures of a time-varying exposure: an application of structural mean models. Epidemiology. 2022;33(1):84–94.

Article  PubMed  Google Scholar 

Evans DM, Moen G-H, Hwang L-D, Lawlor DA, Warrington NM. Elucidating the role of maternal environmental exposures on offspring health and disease using two-sample Mendelian randomization. Int J Epidemiol. 2019;48(3):861–75.

Article  PubMed  PubMed Central  Google Scholar 

Yang Q, Millard LAC, Davey Smith G. Proxy gene-by-environment Mendelian randomization study confirms a causal effect of maternal smoking on offspring birthweight, but little evidence of long-term influences on offspring health. Int J Epidemiol. 2020;49(4):1207–18.

Article  PubMed  Google Scholar 

Allard C, Desgagné V, Patenaude J, Lacroix M, Guillemette L, Battista MC, et al. Mendelian randomization supports causality between maternal hyperglycemia and epigenetic regulation of leptin gene in newborns. Epigenetics. 2015;10(4):342–51.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alwan NA, Lawlor DA, McArdle HJ, Greenwood DC, Cade JE. Exploring the relationship between maternal iron status and offspring’s blood pressure and adiposity: a Mendelian randomization study. Clin Epidemiol. 2012;4:193–200.

Article  PubMed Central  Google Scholar 

Arafat S, Minică CC. Fetal origins of mental disorders? An answer based on mendelian randomization. Twin Res Hum Genet. 2018;21(6):485–94.

Article  PubMed  PubMed Central  Google Scholar 

Au Yeung SL, Li AM, Schooling CM. A life course approach to elucidate the role of adiposity in asthma risk: evidence from a Mendelian randomisation study. J Epidemiol Community Health. 2021;75(3):277–81.

PubMed  Google Scholar 

Barry CS, Lawlor DA, Shapland CY, Sanderson E, Borges MC. Using mendelian randomisation to prioritise candidate maternal metabolic traits influencing offspring birthweight. Metabolites. 2022;12(6):537.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bédard A, Lewis SJ, Burgess S, Henderson AJ, Shaheen SO. Maternal iron status during pregnancy and respiratory and atopic outcomes in the offspring: a Mendelian randomisation study. BMJ Open Respir Res. 2018;5(1):e000275.

Article  PubMed  PubMed Central  Google Scholar 

Belbasis L, Bellou V, Tzoulaki I, Evangelou E. Early-life factors and risk of multiple sclerosis: an MR-EWAS. Neuroepidemiology. 2020;54(6):433–45.

Article  PubMed  Google Scholar 

Bell JA, Carslake D, Wade KH, Richmond RC, Langdon RJ, Vincent EE, et al. Influence of puberty timing on adiposity and cardiometabolic traits: a Mendelian randomisation study. PLoS Med. 2018;15(8):e1002641.

Article  PubMed Central  Google Scholar 

Bernard JY, Pan H, Aris IM, Moreno-Betancur M, Soh SE, Yap F, et al. Long-chain polyunsaturated fatty acids, gestation duration, and birth size: a mendelian randomization study using fatty acid desaturase variants. Am J Clin Nutr. 2018;108(1):92–100.

Article  PubMed  Google Scholar 

Bond TA, Richmond RC, Karhunen V, Cuellar-Partida G, Borges MC, Zuber V, et al. Exploring the causal effect of maternal pregnancy adiposity on offspring adiposity: mendelian randomisation using polygenic risk scores. BMC Med. 2022;20(1):34.

Article  CAS 

Comments (0)

No login
gif