Brain metabolite levels in remitted psychotic depression with consideration of effects of antipsychotic medication

Albert, K. A., Hemmings, H. C., Jr., Adamo, A. I., Potkin, S. G., Akbarian, S., Sandman, C. A., Cotman, C. W., Bunney, W. E., Jr., & Greengard, P. (2002). Evidence for decreased DARPP-32 in the prefrontal cortex of patients with schizophrenia. Archives of General Psychiatry, 59(8), 705–712. https://doi.org/10.1001/archpsyc.59.8.705

Article  CAS  PubMed  Google Scholar 

Bingham, K. S., Calarco, N., Dickie, E. W., Alexopoulos, G. S., Butters, M. A., Meyers, B. S., Marino, P., Neufeld, N. H., Rothschild, A. J., Whyte, E. M., Mulsant, B. H., Flint, A. J., & Voineskos, A. N. (2023). The relationship of white matter microstructure with psychomotor disturbance and relapse in remitted psychotic depression. Journal of Affective Disorders, 334, 317–324. https://doi.org/10.1016/j.jad.2023.04.136

Article  PubMed  Google Scholar 

Brand, A., Richter-Landsberg, C., & Leibfritz, D. (1993). Multinuclear NMR studies on the energy metabolism of glial and neuronal cells. Developmental Neuroscience, 15(3–5), 289–298. https://doi.org/10.1159/000111347

Article  CAS  PubMed  Google Scholar 

Busatto, G. F. (2013). Structural and functional neuroimaging studies in major depressive disorder with psychotic features: a critical review. Schizophrenia Bulletin, 39(4), 776–786. https://doi.org/10.1093/schbul/sbt054

Article  PubMed  PubMed Central  Google Scholar 

Chang, K., Delbello, M., Chu, W. J., Garrett, A., Kelley, R., Mills, N., Howe, M., Bryan, H., Adler, C., Eliassen, J., Spielman, D., & Strakowski, S. M. (2012). Neurometabolite effects of response to quetiapine and placebo in adolescents with bipolar depression. Journal of Child and Adolescent Psychopharmacology, 22(4), 261–268. https://doi.org/10.1089/cap.2011.0153

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, C. S., Chiang, I. C., Li, C. W., Lin, W. C., Lu, C. Y., Hsieh, T. J., Liu, G. C., Lin, H. F., & Kuo, Y. T. (2009). Proton magnetic resonance spectroscopy of late-life major depressive disorder. Psychiatry Research, 172(3), 210–214. https://doi.org/10.1016/j.pscychresns.2009.01.003

Article  PubMed  Google Scholar 

Chen, L. P., Dai, H. Y., Dai, Z. Z., Xu, C. T., & Wu, R. H. (2014). Anterior cingulate cortex and cerebellar hemisphere neurometabolite changes in depression treatment: a 1H magnetic resonance spectroscopy study. Psychiatry and Clinical Neurosciences, 68(5), 357–364. https://doi.org/10.1111/pcn.12138

Article  CAS  PubMed  Google Scholar 

Chiappelli, J., Rowland, L. M., Wijtenburg, S. A., Muellerklein, F., Tagamets, M., McMahon, R. P., Gaston, F., Kochunov, P., & Hong, L. E. (2015). Evaluation of myo-inositol as a potential biomarker for depression in schizophrenia. Neuropsychopharmacology, 40(9), 2157–2164. https://doi.org/10.1038/npp.2015.57

Article  CAS  PubMed  PubMed Central  Google Scholar 

Coryell, W., Leon, A., Winokur, G., Endicott, J., Keller, M., Akiskal, H., & Solomon, D. (1996). Importance of psychotic features to long-term course in major depressive disorder. American Journal of Psychiatry, 153(4), 483–489. https://doi.org/10.1176/ajp.153.4.483

Article  CAS  PubMed  Google Scholar 

Cotter, D., Mackay, D., Chana, G., Beasley, C., Landau, S., & Everall, I. P. (2002). Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder. Cerebral Cortex, 12(4), 386–394. https://doi.org/10.1093/cercor/12.4.386

Article  PubMed  Google Scholar 

Das, T. K., Dey, A., Sabesan, P., Javadzadeh, A., Theberge, J., Radua, J., & Palaniyappan, L. (2018). Putative astroglial dysfunction in schizophrenia: a meta-analysis of (1)H-MRS studies of medial prefrontal myo-inositol. Front Psychiatry, 9, 438. https://doi.org/10.3389/fpsyt.2018.00438

Article  PubMed  PubMed Central  Google Scholar 

Fisher, S. K., Novak, J. E., & Agranoff, B. W. (2002). Inositol and higher inositol phosphates in neural tissues: homeostasis, metabolism and functional significance. Journal of Neurochemistry, 82(4), 736–754. https://doi.org/10.1046/j.1471-4159.2002.01041.x

Article  CAS  PubMed  Google Scholar 

Flint, A. J., Meyers, B. S., Rothschild, A. J., Whyte, E. M., Alexopoulos, G. S., Rudorfer, M. V., Marino, P., Banerjee, S., Pollari, C. D., Wu, Y., Voineskos, A. N., Mulsant, B. H., Group S.-P. I. S. (2019). Effect of continuing olanzapine vs placebo on relapse among patients with psychotic depression in remission: the STOP-PD II randomized clinical trial. JAMA, 322(7), 622–631. https://doi.org/10.1001/jama.2019.10517

Article  CAS  PubMed  PubMed Central  Google Scholar 

Foland-Ross, L. C., & Gotlib, I. H. (2012). Cognitive and neural aspects of information processing in major depressive disorder: an integrative perspective. Frontiers in Psychology, 3, 489. https://doi.org/10.3389/fpsyg.2012.00489

Article  PubMed  PubMed Central  Google Scholar 

Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198. http://www.ncbi.nlm.nih.gov/pubmed/1202204

Gasparovic, C., Song, T., Devier, D., Bockholt, H. J., Caprihan, A., Mullins, P. G., Posse, S., Jung, R. E., & Morrison, L. A. (2006). Use of tissue water as a concentration reference for proton spectroscopic imaging. Magnetic Resonance in Medicine, 55(6), 1219–1226. https://doi.org/10.1002/mrm.20901

Article  CAS  PubMed  Google Scholar 

Griffin, J. L., Bollard, M., Nicholson, J. K., & Bhakoo, K. (2002). Spectral profiles of cultured neuronal and glial cells derived from HRMAS (1)H NMR spectroscopy. NMR in Biomedicine, 15(6), 375–384. https://doi.org/10.1002/nbm.792

Article  CAS  PubMed  Google Scholar 

Hamilton, M. (1960). A rating scale for depression. Journal of Neurology, Neurosurgery and Psychiatry, 23, 56–62. https://doi.org/10.1136/jnnp.23.1.56

Article  CAS  PubMed  PubMed Central  Google Scholar 

Isaacks, R. E., Bender, A. S., Kim, C. Y., Prieto, N. M., & Norenberg, M. D. (1994). Osmotic regulation of myo-inositol uptake in primary astrocyte cultures. Neurochemical Research, 19(3), 331–338. https://doi.org/10.1007/bf00971582

Article  CAS  PubMed  Google Scholar 

Iwata, Y., Nakajima, S., Plitman, E., Mihashi, Y., Caravaggio, F., Chung, J. K., Kim, J., Gerretsen, P., Mimura, M., Remington, G., & Graff-Guerrero, A. (2018). Neurometabolite levels in antipsychotic-naive/free patients with schizophrenia: a systematic review and meta-analysis of (1)H-MRS studies. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 86, 340–352. https://doi.org/10.1016/j.pnpbp.2018.03.016

Article  CAS  PubMed  Google Scholar 

Johnson, J., Horwath, E., & Weissman, M. M. (1991). The validity of major depression with psychotic features based on a community study. Archives of General Psychiatry, 48(12), 1075–1081. https://doi.org/10.1001/archpsyc.1991.01810360039006

Article  CAS  PubMed  Google Scholar 

Kalkman, H. O. (2006). The role of the phosphatidylinositide 3-kinase-protein kinase B pathway in schizophrenia. Pharmacology & Therapeutics, 110(1), 117–134. https://doi.org/10.1016/j.pharmthera.2005.10.014

Article  CAS  Google Scholar 

Kaymak, S. U., Demir, B., Oguz, K. K., Senturk, S., & Ulug, B. (2009). Antidepressant effect detected on proton magnetic resonance spectroscopy in drug-naive female patients with first-episode major depression. Psychiatry and Clinical Neurosciences, 63(3), 350–356. https://doi.org/10.1111/j.1440-1819.2009.01951.x

Article  CAS  PubMed  Google Scholar 

Keshavan, M. S., Stanley, J. A., Montrose, D. M., Minshew, N. J., & Pettegrew, J. W. (2003). Prefrontal membrane phospholipid metabolism of child and adolescent offspring at risk for schizophrenia or schizoaffective disorder: an in vivo 31P MRS study. Molecular Psychiatry, 8(3), 316–323, 251. https://doi.org/10.1038/sj.mp.4001325

Article  CAS  PubMed  Google Scholar 

Leppik, L., Parksepp, M., Janno, S., Koido, K., Haring, L., Vasar, E., & Zilmer, M. (2020). Profiling of lipidomics before and after antipsychotic treatment in first-episode psychosis. European Archives of Psychiatry and Clinical Neuroscience, 270(1), 59–70. https://doi.org/10.1007/s00406-018-0971-6

Article  PubMed  Google Scholar 

MacDonald, K., Krishnan, A., Cervenka, E., Hu, G., Guadagno, E., & Trakadis, Y. (2019). Biomarkers for major depressive and bipolar disorders using metabolomics: a systematic review. American Journal of Medical Genetics. Part b, Neuropsychiatric Genetics, 180(2), 122–137. https://doi.org/10.1002/ajmg.b.32680

Article  Google Scholar 

Maj, M., Pirozzi, R., Magliano, L., Fiorillo, A., & Bartoli, L. (2007). Phenomenology and prognostic significance of delusions in major depressive disorder: a 10-year prospective follow-up study. Journal of Clinical Psychiatry, 68(9), 1411–1417. https://doi.org/10.4088/jcp.v68n0913

Article  PubMed  Google Scholar 

Merritt, K., Egerton, A., Kempton, M. J., Taylor, M. J., & McGuire, P. K. (2016). Nature of glutamate alterations in schizophrenia: a meta-analysis of proton magnetic resonance spectroscopy studies. JAMA Psychiatry, 73(7), 665–674. https://doi.org/10.1001/jamapsychiatry.2016.0442

Article  PubMed  Google Scholar 

Moriguchi, S., Takamiya, A., Noda, Y., Horita, N., Wada, M., Tsugawa, S., Plitman, E., Sano, Y., Tarumi, R., ElSalhy, M., Katayama, N., Ogyu, K., Miyazaki, T., Kishimoto, T., Graff-Guerrero, A., Meyer, J. H., Blumberger, D. M., Daskalakis, Z. J., Mimura, M., & Nakajima, S. (2019). Glutamatergic neurometabolite levels in major depressive disorder: a systematic review and meta-analysis of proton magnetic resonance spectroscopy studies. Molecular Psychiatry, 24(7), 952–964. https://doi.org/10.1038/s41380-018-0252-9

Article  CAS  PubMed  Google Scholar 

Neufeld, N. H., Kaczkurkin, A. N., Sotiras, A., Mulsant, B. H., Dickie, E. W., Flint, A. J., Meyers, B. S., Alexopoulos, G. S., Rothschild, A. J., Whyte, E. M., Mah, L., Nierenberg, J., Hoptman, M. J., Davatzikos, C., Satterthwaite, T. D., & Voineskos, A. N. (2020). Structural brain networks in remitted psychotic depression. Neuropsychopharmacology. https://doi.org/10.1038/s41386-020-0646-7

Article  PubMed  PubMed Central  Google Scholar 

Neufeld, N. H., Oliver, L. D., Mulsant, B. H., Alexopoulos, G. S., Hoptman, M. J., Tani, H., Marino, P., Meyers, B. S., Rothschild, A. J., Whyte, E. M., Bingham, K. S., Flint, A. J., & Voineskos, A. N. (2023). Effects of antipsychotic medication on functional connectivity in major depressive disorder with psychotic features. Molecular Psychiatry. https://doi.org/10.1038/s41380-023-02118-8

Article  PubMed  Google Scholar 

Ohayon, M. M., & Schatzberg, A. F. (2002). Prevalence of depressive episodes with psychotic features in the general population. American Journal of Psychiatry, 159(11), 1855–1861.

Comments (0)

No login
gif