Usage of ectoine as a cryoprotectant for cryopreservation of lactic acid bacteria

Abd El Ghany K, Hamouda R, Abd Elhafez E et al (2015) A potential role of Lactobacillus acidophilus LA1 and its exopolysaccharides on cancer cells in male albino mice. Biotechnol Biotechnol Equip 29:977–983. https://doi.org/10.1080/13102818.2015.1050455

Article  CAS  Google Scholar 

Al-Fageeh MB, Smales CM (2006) Control and regulation of the cellular responses to cold shock: the responses in yeast and mammalian systems. Biochem J 397:247–259. https://doi.org/10.1042/BJ20060166

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amaretti A, Di Nunzio M, Pompei A et al (2013) Antioxidant properties of potentially probiotic bacteria: in vitro and in vivo activities. Appl Microbiol Biotechnol 97:809–817. https://doi.org/10.1007/s00253-012-4241-7

Article  CAS  PubMed  Google Scholar 

Andersen AB, Fog-Petersen MS, Larsen H, Skibsted LH (1999) Storage stability of freeze-dried starter cultures (Streptococcus thermophilus) as related to physical state of freezing matrix. LWT Food Sci Technol 32:540–547. https://doi.org/10.1006/fstl.1999.0594

Article  CAS  Google Scholar 

Ayala-del-Río HL, Chain PS, Grzymski JJ et al (2010) The genome sequence of Psychrobacter arcticus 273-4, a psychroactive siberian permafrost bacterium, reveals mechanisms for adaptation to low-temperature growth. Appl Environ Microbiol 76:2304–2312. https://doi.org/10.1128/AEM.02101-09

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bachmann H, Kleerebezem M, Van Hylckama Vlieg JET (2008) High-throughput identification and validation of in situ-expressed genes of Lactococcus lactis. Appl Environ Microbiol 74:4727–4736. https://doi.org/10.1128/AEM.00297-08

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baindara P, Mandal SM (2020) Bacteria and bacterial anticancer agents as a promising alternative for cancer therapeutics. Biochimie 177:164–189. https://doi.org/10.1016/j.biochi.2020.07.020

Article  CAS  PubMed  Google Scholar 

Bonczar G, Walczycka MB, Domagała J et al (2016) Effect of dairy animal species and of the type of starter cultures on the cholesterol content of manufactured fermented milks. Small Rumin Res 136:22–26. https://doi.org/10.1016/j.smallrumres.2015.12.033

Article  Google Scholar 

Bruno-Bárcena JM, Andrus JM, Libby SL et al (2004) Expression of a heterologous manganese superoxide dismutase gene in intestinal lactobacilli provides protection against hydrogen peroxide toxicity. Appl Environ Microbiol 70:4702–4710. https://doi.org/10.1128/AEM.70.8.4702-4710.2004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cao R, Sogabe T, Mikajiri S, Kawai K (2022) Effects of sucrose, carnosine, and their mixture on the glass transition behavior and storage stability of freeze-dried lactic acid bacteria at various water activities. Cryobiology 106:131–138. https://doi.org/10.1016/j.cryobiol.2022.02.003

Article  CAS  PubMed  Google Scholar 

Cheng Z, Yan X, Wu J et al (2022) Effects of freeze drying in complex lyoprotectants on the survival, and membrane fatty acid composition of Lactobacillus plantarum L1 and Lactobacillus fermentum L2. Cryobiology 105:1–9. https://doi.org/10.1016/j.cryobiol.2022.01.003

Article  CAS  PubMed  Google Scholar 

Cui Y, Xu T, Qu X et al (2016) New insights into various production characteristics of streptococcus thermophilus strains. IJMS 17:1701. https://doi.org/10.3390/ijms17101701

Cukkemane A, Kumar P, Sathyamoorthy B (2020) A metabolomics footprint approach to understanding the benefits of synbiotics in functional foods and dietary therapeutics for health, communicable and non-communicable diseases. Food Res Int 128:108679. https://doi.org/10.1016/j.foodres.2019.108679

Article  CAS  PubMed  Google Scholar 

Czech L, Hermann L, Stöveken N et al (2018) Role of the extremolytes ectoine and hydroxyectoine as stress protectants and nutrients: genetics, phylogenomics, biochemistry, and structural analysis. Genes 9:177. https://doi.org/10.3390/genes9040177

da Costa MS, Santos H, Galinski EA (1998) An overview of the role and diversity of compatible solutes in Bacteria and Archaea. In: Antranikian G (ed) Biotechnology of Extremophiles. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 117–153

Chapter  Google Scholar 

Dateoka S, Ohnishi Y, Kakudo K (2012) Effects of CRM197, a specific inhibitor of HB-EGF, in oral cancer. Med Mol Morphol 45:91–97. https://doi.org/10.1007/s00795-011-0543-6

Article  CAS  PubMed  Google Scholar 

De Vuyst L, Tsakalidou E (2008) Streptococcus macedonicus, a multi-functional and promising species for dairy fermentations. Int Dairy J 18:476–485. https://doi.org/10.1016/j.idairyj.2007.10.006

Article  CAS  Google Scholar 

De Vuyst L, Weckx S, Ravyts F et al (2011) New insights into the exopolysaccharide production of Streptococcus thermophilus. Int Dairy J 21:586–591. https://doi.org/10.1016/j.idairyj.2011.03.016

Article  CAS  Google Scholar 

Dwivedi M, Brinkkötter M, Harishchandra RK, Galla HJ (2014) Biophysical investigations of the structure and function of the tear fluid lipid layers and the effect of ectoine. Part B: Artificial lipid films. Biochim Biophys Acta (BBA) Biomembranes 1838:2716–2727. https://doi.org/10.1016/j.bbamem.2014.05.007

El Assal R, Guven S, Gurkan UA et al (2014) Bio-inspired cryo-ink preserves red blood cell phenotype and function during nanoliter vitrification. Adv Mater 26:5815–5822. https://doi.org/10.1002/adma.201400941

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fonseca F, Béal C, Corrieu G (2001) Operating conditions that affect the resistance of lactic acid bacteria to freezing and frozen storage. Cryobiology 43:189–198. https://doi.org/10.1006/cryo.2001.2343

Article  CAS  PubMed  Google Scholar 

Foschino R, Fiori E, Galli A (1996) Survival and residual activity of Lactobacillus acidophilus frozen cultures under different conditions. J Dairy Res 63:295–303. https://doi.org/10.1017/S0022029900031782

Article  CAS  Google Scholar 

Gao J, Gu F, Ruan H et al (2013) Induction of apoptosis of gastric cancer cells SGC7901 in vitro by a cell-free fraction of Tibetan kefir. Int Dairy J 30:14–18. https://doi.org/10.1016/j.idairyj.2012.11.011

Article  CAS  Google Scholar 

Gezginc Y, Akyol I, Kuley E, Özogul F (2013) Biogenic amines formation in Streptococcus thermophilus isolated from home-made natural yogurt. Food Chem 138:655–662. https://doi.org/10.1016/j.foodchem.2012.10.138

Article  CAS  PubMed  Google Scholar 

Gholamhosseinpour A, Hashemi SMB (2019) Ultrasound pretreatment of fermented milk containing probiotic Lactobacillus plantarum AF1: Carbohydrate metabolism and antioxidant activity. J Food Process Eng 42:e12930. https://doi.org/10.1111/jfpe.12930

Article  CAS  Google Scholar 

Gilbert JA, Hill PJ, Dodd CER, Laybourn-Parry J (2004) Demonstration of antifreeze protein activity in Antarctic lake bacteria. Microbiology 150:171–180. https://doi.org/10.1099/mic.0.26610-0

Article  CAS  PubMed  Google Scholar 

Giulio BD, Orlando P, Barba G et al (2005) Use of alginate and cryo-protective sugars to improve the viability of lactic acid bacteria after freezing and freeze-drying. World J Microbiol Biotechnol 21:739–746. https://doi.org/10.1007/s11274-004-4735-2

Article  CAS  Google Scholar 

Guo N, Song Y, Yan J, Jiang M, Xu Y, Li Z, Wei Q (2023) The effect of Cryopreservation on the survival of Nocardia farcinica and Yersinia pestis vaccine strains. Biopreserv Biobank 21(4):397–406

Hahn MB, Meyer S, Schröter MA et al (2017) DNA protection by ectoine from ionizing radiation: molecular mechanisms. Phys Chem Chem Phys 19:25717–25722. https://doi.org/10.1039/C7CP02860A

Article  CAS  PubMed  Google Scholar 

Harishchandra RK, Wulff S, Lentzen G et al (2010) The effect of compatible solute ectoines on the structural organization of lipid monolayer and bilayer membranes. Biophys Chem 150:37–46. https://doi.org/10.1016/j.bpc.2010.02.007

Article  CAS  PubMed  Google Scholar 

Haroun BM, Refaat BM, El-Menoufy HA et al (2013) Structure analysis and antitumor activity of the exopolysaccharide from probiotic Lactobacillus plantarum NRRL B- 4496 in vitro and in vivo. J Appl Sci Res 9:425–434

CAS  Google Scholar 

Held C, Neuhaus T, Sadowski G (2010) Compatible solutes: Thermodynamic properties and biological impact of ectoines and prolines. Biophys Chem 152:28–39. https://doi.org/10.1016/j.bpc.2010.07.003

Article  CAS  PubMed  Google Scholar 

Heylen K, Hoefman S, Vekeman B et al (2012) Safeguarding bacterial resources promotes biotechnological innovation. Appl Microbiol Biotechnol 94:565–574. https://doi.org/10.1007/s00253-011-3797-y

Article  CAS  PubMed  Google Scholar 

Hirayama K, Rafter J (1999) The role of lactic acid bacteria in colon cancer prevention: mechanistic considerations. In: Konings WN, Kuipers OP, In ’T Veld JHJH (eds) Lactic acid bacteria: Genetics, metabolism and applications. Springer Netherlands, Dordrecht, pp 391–394

Hols P, Hancy F, Fontaine L et al (2005) New insights in the molecular biology and physiology of Streptococcus thermophilus revealed by comparative genomics. FEMS Microbiol Rev 29:435–463. https://doi.org/10.1016/j.fmrre.2005.04.008

Article  CAS  PubMed  Google Scholar 

Huang Y, Wu F, Wang X et al (2013) Characterization of Lactobacillus plantarum Lp27 isolated from Tibetan kefir grains: A potential probiotic bacterium with cholesterol-lowering effects. J Dairy Sci 96:2816–2825. https://doi.org/10.3168/jds.2012-6371

Article  CAS  PubMed  Google Scholar 

Hüfner E, Markieton T, Chaillou S et al (2007) Identification of Lactobacillus sakei genes induced during meat fermentation and their role in survival and growth. Appl Environ Microbiol 73:2522–2531. https://doi.org/10.1128/AEM.02396-06

Article  CAS  PubMed  PubMed Central  Google Scholar 

Iyer R, Tomar SK, Uma Maheswari T, Singh R (2010) Streptococcus thermophilus strains: Multifunctional lactic acid bacteria. Int Dairy J 20:133–141. https://doi.org/10.1016/j.idairyj.2009.10.005

Article  CAS  Google Scholar 

Comments (0)

No login
gif