Alterations in Per2, Bcl2 gene expression, and oxidative status in aged rats liver after light pulse at night

Foster RG, Kreitzman L. The rhythms of life: what your body clock means to you! Exp Physiol. 2014;99:599–606.

Article  PubMed  Google Scholar 

Moore RY, Eichler VB. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res. 1972;42:201–6.

Article  CAS  PubMed  Google Scholar 

Reppert SM, Weaver DR. Coordination of circadian timing in mammals. Nature. 2002;418:935–41.

Article  CAS  PubMed  Google Scholar 

Preitner N, Damiola F, Lopez-Molina L, et al. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell. 2002;110:251–60.

Article  CAS  PubMed  Google Scholar 

Foster RG, Provencio I, Hudson D, et al. Circadian photoreception in the retinally degenerate mouse (rd/rd). J Comp Physiol. 1991;169:39–50.

Article  CAS  Google Scholar 

Moore RY, Speh JC, Card JP. The retinohypothalamic tract originates from a distinct subset of retinal ganglion cells. J Comp Neurol. 1995;352:351–66.

Article  CAS  PubMed  Google Scholar 

Hughes S, Jagannath A, Hankins MW, et al. Photic regulation of clock systems. Methods Enzymol. 2015;552:125–43.

Article  CAS  PubMed  Google Scholar 

Hirota T, Fukada Y. Resetting mechanism of central and peripheral circadian clocks in mammals. Zool Sci. 2004;21:359–68.

Article  Google Scholar 

Zhang S, Daib M, Wang X, et al. Signalling entrains the peripheral circadian clock. Cell Signal. 2020;69: 109433.

Article  CAS  PubMed  Google Scholar 

Pang KCH, Jonathan P, Miller JP, et al. Age-related disruptions of circadian rhythm and memory in the senescence-accelerated mouse (SAMP8). Age (Dordr). 2006;28(3):283–96.

Article  PubMed  Google Scholar 

Sastre J, Pallardó FV, Viña J. Mitochondrial oxidative stress plays a key role in aging and apoptosis. IUBMB Life. 2000;49:427–35.

Article  CAS  PubMed  Google Scholar 

Dato S, Crocco P, D’Aquila P, et al. Exploring the role of genetic variability and lifestyle in oxidative stress response for healthy aging and longevity. Int J Mol Sci. 2013;14:16443–72.

Article  PubMed  PubMed Central  Google Scholar 

Abdel-Rahman M, Abdel-Kader S, El-Masry H, El-Hennamy RE. Light exposure during late night attenuates the risk of scopolamine-induced Alzheimer disease in aged rats. Egypt J Basic Appl Sci. 2020;7(1):126–40.

Google Scholar 

Ramanatan C, Campbell A, Tomczak A, Nunez A, Smale L, Yana L. Compartmentalized expression of light-induced clock genes in the suprachiasmatic nucleus of the diurnal grass rat (Arvicanthi niloticus). Neuroscience. 2009;161(4):960–9.

Article  Google Scholar 

Fonken LK, Nelson RJ. The effects of light at night on circadian clocks and metabolism. Endocr Rev. 2014;35(4):648–70.

Article  CAS  PubMed  Google Scholar 

Sládek M, Jindráková Z, Bendová Z, Sumová A. Postnatal ontogenesis of the circadian clock within the rat liver. Am J Physiol Regul Integr Comp Physiol. 2007;292:R1224–9.

Article  PubMed  Google Scholar 

Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351–8.

Article  CAS  PubMed  Google Scholar 

Green LC, Wagner DA, Glogowski J, et al. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem. 1982;126(1):131–8.

Article  CAS  PubMed  Google Scholar 

Sedlak J, Lindsay RH. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem. 1968;25(1):192–205.

Article  CAS  PubMed  Google Scholar 

Touitou Y, Reinberg A, Touitou D. Association between light at night, melatonin secretion, sleep deprivation, and the internal clock. Health impacts and mechanisms of circadian disruption. Life Sci. 2017;173:94–106.

Article  CAS  PubMed  Google Scholar 

Lee CC. The circadian clock and tumor suppression by mammalian period genes. Methods Enzymol. 2005;393:852–61.

Article  CAS  PubMed  Google Scholar 

Mavroudis PD, DuBois DC, Almon RR, Jusko W. Modeling circadian variability of core-clock and clock-controlled genes in four tissues of the rat. PLoS ONE. 2018;13(6): e0197534.

Article  PubMed  PubMed Central  Google Scholar 

Albrecht U, Zheng B, Larkin D, et al. MPer1 and mper2 are essential for normal resetting of the circadian clock. J Biol Rhythms. 2001;16:100–4.

Article  CAS  PubMed  Google Scholar 

Alaasam VJ, Liu X, Niu Y, et al. Effects of dim artificial light at night on locomotor activity, cardiovascular physiology, and circadian clock genes in a diurnal songbird. Life Sci. 2022;307:12087.

Google Scholar 

Kolker DE, Fukuyama H, Huang DS, Takahashi JS, Horton TH, Turek FW. Aging alters circadian and light-induced expression of clock genes in golden hamsters. J Biol Rhythms. 2003;18(2):159–69.

Article  CAS  PubMed  Google Scholar 

Hamada T, Sato HS, Honma K. Light responsiveness of clock genes, Per1 and Per2, in the olfactory bulb of mice. Biochem Biophys Res Commun. 2011;409(4):727–31.

Article  CAS  PubMed  Google Scholar 

Husse J, Eichele G, Oster H. Synchronization of the mammalian circadian timing system: Light can control peripheral clocks independently of the SCN clock. BioEssays. 2015;37(10):1119–28.

Article  PubMed  PubMed Central  Google Scholar 

Nahata M, Mogami S, Sekine H, et al. Bcl-2-dependent autophagy disruption during aging impairs amino acid utilization that is restored by hochuekkito. npj Aging Mech Dis. 2021;7:13.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Finlay LA, Michels AJ, ButlerJ A, et al. 1,28R-α-lipoic acid does not reverse hepatic inflammation of aging, but lowers lipid anabolism, while accentuating circadian rhythm transcript profiles. Am J Physiol Regul Integr Comp Physiol. 2012;302(5):R587–97.

Article  CAS  PubMed  Google Scholar 

del Castro MR, Suarez E, Kraiselburd E, et al. Aging increases mitochondrial DNA damage and oxidative stress in liver of rhesus monkeys. Exp Gerontol. 2012;47(1):29–37.

Article  CAS  PubMed  Google Scholar 

Mohamed AE, Mahmoud AM, Mohamed WR, Mohamed T. Femtosecond laser attenuates oxidative stress, inflammation, and liver fibrosis in rats. Possible role of PPARγ and Nrf2/HO-1 signaling. Environ Pollut. 2021;282:117036.

Google Scholar 

Guan Q, Wang Z, Cao J, et al. Monochromatic blue light not green light exposure is associated with continuous light-induced hepatic steatosis in high fat diet fed-mice via oxidative stress. Ecotoxicol Environ Saf. 2022;239: 113625.

Article  CAS  PubMed  Google Scholar 

Tamaru T, Hattori M, Ninomiya Y, Kawamura G, Varès G, Honda K, Mishra DP, Wang B, Benjamin I, Sassone-Corsi P, Ozawa T, Takamatsu K. Stress resets circadian clocks to coordinate prosurvival signals. PLoS ONE. 2013;8(12):e82006.

Article  PubMed  PubMed Central  Google Scholar 

Sheehan D, Gerardene-Meade G, Foley VM, Dowd CA. Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J. 2001;360:1–16.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nakahata Y, Sahar S, Astarita G, et al. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science. 2009;324:654–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun CM, Huang SF, Zeng JM, et al. Per2 inhibits k562 leukemia cell growth in vitro and in vivo through cell cycle arrest and apoptosis induction. Pathol Oncol Res. 2010;16:403–11.

Article  CAS  PubMed  Google Scholar 

Magnone MC, Langmesser S, Bezdek AC, et al. The mammalian circadian clock gene Per2 modulates cell death in response to oxidative stress. Front Neurol. 2014;5:289.

PubMed  Google Scholar 

Comments (0)

No login
gif