Wu BX, Clarke CJ, Hannun YA (2010) Mammalian neutral sphingomyelinases: regulation and roles in cell signaling responses. Neuromolecular Med 12(4):320–330. https://doi.org/10.1007/s12017-010-8120-z
Article CAS PubMed PubMed Central Google Scholar
Krut O, Wiegmann K, Kashkar H, Yazdanpanah B, Kronke M (2006) Novel tumor necrosis factor-responsive mammalian neutral sphingomyelinase-3 is a C-tail-anchored protein. J Biol Chem 281(19):13784–13793. https://doi.org/10.1074/jbc.M511306200
Article CAS PubMed Google Scholar
Peeters BWA, Piet ACA, Fornerod M (2022) Generating membrane curvature at the nuclear pore: a lipid point of view. Cells-Basel 11(3):469. https://doi.org/10.3390/cells11030469
Cheng LC, Baboo S, Lindsay C, Brusman L, Martinez-Bartolome S, Tapia O et al (2019) Identification of new transmembrane proteins concentrated at the nuclear envelope using organellar proteomics of mesenchymal cells. Nucleus-Phila 10(1):126–143. https://doi.org/10.1080/19491034.2019.1618175
Atilla-Gokcumen GE, Muro E, Relat-Goberna J, Sasse S, Bedigian A, Coughlin ML et al (2014) Dividing cells regulate their lipid composition and localization. Cell 156(3):428–439. https://doi.org/10.1016/j.cell.2013.12.015
Article CAS PubMed PubMed Central Google Scholar
Corcoran CA, He Q, Ponnusamy S, Ogretmen B, Huang Y, Sheikh MS (2008) Neutral sphingomyelinase-3 is a DNA damage and nongenotoxic stress-regulated gene that is deregulated in human malignancies. Mol Cancer Res 6(5):795–807. https://doi.org/10.1158/1541-7786.MCR-07-2097
Article CAS PubMed PubMed Central Google Scholar
Magini P, Smits DJ, Vandervore L, Schot R, Columbaro M, Kasteleijn E et al (2019) Loss of SMPD4 causes a developmental disorder characterized by microcephaly and congenital arthrogryposis. Am J Hum Genet. 105(4):689–705. https://doi.org/10.1016/j.ajhg.2019.08.006
Article CAS PubMed PubMed Central Google Scholar
Bijarnia-Mahay S, Somashekar PH, Kaur P, Kulshrestha S, Ramprasad VL, Murugan S et al (2021) Growth and neurodevelopmental disorder with arthrogryposis, microcephaly and structural brain anomalies caused by bi-allelic partial deletion of SMPD4 gene. J Hum Genet. https://doi.org/10.1038/s10038-021-00981-3
Yamada M, Suzuki H, Shima T, Uehara T, Kosaki K (2022) A patient with compound heterozygosity of SMPD4: another example of utility of exome-based copy number analysis in autosomal recessive disorders. Am J Med Genet A 188(2):613–617. https://doi.org/10.1002/ajmg.a.62535
Article CAS PubMed Google Scholar
Ravenscroft G, Clayton JS, Faiz F, Sivadorai P, Milnes D, Cincotta R et al (2021) Neurogenetic fetal akinesia and arthrogryposis: genetics, expanding genotype-phenotypes and functional genomics. J Med Genet 58(9):609–618. https://doi.org/10.1136/jmedgenet-2020-106901
Article CAS PubMed Google Scholar
Ji W, Kong X, Yin H, Xu J, Wang X (2022) Case report: novel biallelic null variants of SMPD4 confirm its involvement in neurodevelopmental disorder with microcephaly, arthrogryposis, and structural brain anomalies. Front Genet 13:872264. https://doi.org/10.3389/fgene.2022.872264
Article PubMed PubMed Central Google Scholar
Smits DJ, Schot R, Krusy N, Wiegmann K, Utermohlen O, Mulder MT et al (2023) SMPD4 regulates mitotic nuclear envelope dynamics and its loss causes microcephaly and diabetes. Brain. https://doi.org/10.1093/brain/awad033
Monies D, Abouelhoda M, Assoum M, Moghrabi N, Rafiullah R, Almontashiri N et al (2019) Lessons learned from large-scale, first-tier clinical exome sequencing in a highly consanguineous population. Am J Hum Genet 105(4):879. https://doi.org/10.1016/j.ajhg.2019.09.019
Article CAS PubMed PubMed Central Google Scholar
Theresia KJ, Wolfgang H, Gundula G, Michael E, Alexander W, Caroline G et al (2023) Prenatal diagnosis of SMPD4 loss - a neurodevelopmental disorder with microcephaly, arthrogryposis and structural brain anomalies. Prenat Diagn 43(3):284–287. https://doi.org/10.1002/pd.6324
Article CAS PubMed Google Scholar
Watanabe K, Nakashima M, Kumada S, Mashimo H, Enokizono M, Yamada K et al (2021) Identification of two novel de novo TUBB variants in cases with brain malformations: case reports and literature review. J Hum Genet 66(12):1193–1197. https://doi.org/10.1038/s10038-021-00956-4
Article CAS PubMed Google Scholar
Miyamoto S, Nakashima M, Ohashi T, Hiraide T, Kurosawa K, Yamamoto T et al (2019) A case of de novo splice site variant in SLC35A2 showing developmental delays, spastic paraplegia, and delayed myelination. Mol Genet Genomic Med 7(8):e814. https://doi.org/10.1002/mgg3.814
Article CAS PubMed PubMed Central Google Scholar
Olsen ASB, Faergeman NJ (2017) Sphingolipids: membrane microdomains in brain development, function and neurological diseases. Open Biol 7(5). https://doi.org/10.1098/rsob.170069
Hussain G, Wang J, Rasul A, Anwar H, Imran A, Qasim M et al (2019) Role of cholesterol and sphingolipids in brain development and neurological diseases. Lipids Health Dis 18(1):26. https://doi.org/10.1186/s12944-019-0965-z
Article PubMed PubMed Central Google Scholar
Ferreira LF, Moylan JS, Gilliam LA, Smith JD, Nikolova-Karakashian M, Reid MB (2010) Sphingomyelinase stimulates oxidant signaling to weaken skeletal muscle and promote fatigue. Am J Physiol Cell Physiol 299(3):C552–C560. https://doi.org/10.1152/ajpcell.00065.2010
Article CAS PubMed PubMed Central Google Scholar
De Larichaudy J, Zufferli A, Serra F, Isidori AM, Naro F, Dessalle K et al (2012) TNF-alpha- and tumor-induced skeletal muscle atrophy involves sphingolipid metabolism. Skelet Muscle 2(1):2. https://doi.org/10.1186/2044-5040-2-2
Article CAS PubMed PubMed Central Google Scholar
Cowart LA (2010) A novel role for sphingolipid metabolism in oxidant-mediated skeletal muscle fatigue. Focus on “Sphingomyelinase stimulates oxidant signaling to weaken skeletal muscle and promote fatigue”. Am J Physiol Cell Physiol 299(3):C549–C551. https://doi.org/10.1152/ajpcell.00236.2010
Article CAS PubMed Google Scholar
Moylan JS, Smith JD, Wolf Horrell EM, McLean JB, Deevska GM, Bonnell MR et al (2014) Neutral sphingomyelinase-3 mediates TNF-stimulated oxidant activity in skeletal muscle. Redox Biol 2:910–920. https://doi.org/10.1016/j.redox.2014.07.006
Article CAS PubMed PubMed Central Google Scholar
Chaurasia B, Summers SA (2015) Ceramides - lipotoxic inducers of metabolic disorders. Trends Endocrinol Metab 26(10):538–550. https://doi.org/10.1016/j.tem.2015.07.006
Article CAS PubMed Google Scholar
Borodzicz S, Czarzasta K, Kuch M, Cudnoch-Jedrzejewska A (2015) Sphingolipids in cardiovascular diseases and metabolic disorders. Lipids Health Dis 14:55. https://doi.org/10.1186/s12944-015-0053-y
Article CAS PubMed PubMed Central Google Scholar
Coblentz PD, Ahn B, Hayward LF, Yoo JK, Christou DD, Ferreira LF (2019) Small-hairpin RNA and pharmacological targeting of neutral sphingomyelinase prevent diaphragm weakness in rats with heart failure and reduced ejection fraction. Am J Physiol Lung Cell Mol Physiol 316(4):L679–LL90. https://doi.org/10.1152/ajplung.00516.2018
Article PubMed PubMed Central Google Scholar
Zhang C, Qiao S, Wu J, Xu W, Ma S, Zhao B et al (2021) A new insulin-sensitive enhancer from Silene viscidula, WPTS, treats type 2 diabetes by ameliorating insulin resistance, reducing dyslipidemia, and promoting proliferation of islet beta cells. Pharmacol Res 165:105416. https://doi.org/10.1016/j.phrs.2020.105416
Article CAS PubMed Google Scholar
Schuchman EH, Desnick RJ (2017) Types A and B Niemann-Pick disease. Mol Genet Metab 120(1-2):27–33. https://doi.org/10.1016/j.ymgme.2016.12.008
Article CAS PubMed Google Scholar
Hwang SY, Kim TH, Lee HH (2015) Neutral sphingomyelinase and breast cancer research. J Menopausal Med 21(1):24–27. https://doi.org/10.6118/jmm.2015.21.1.24
Article PubMed PubMed Central Google Scholar
Hofmann K, Tomiuk S, Wolff G, Stoffel W (2000) Cloning and characterization of the mammalian brain-specific, Mg2+-dependent neutral sphingomyelinase. Proc Natl Acad Sci U S A 97(11):5895–5900. https://doi.org/10.1073/pnas.97.11.5895
Article CAS PubMed PubMed Central Google Scholar
Clarke CJ, Wu BX, Hannun YA (2011) The neutral sphingomyelinase family: identifying biochemical connections. Adv Enzyme Regul 51(1):51–58. https://doi.org/10.1016/j.advenzreg.2010.09.016
Article CAS PubMed Google Scholar
Tomiuk S, Zumbansen M, Stoffel W (2000) Characterization and subcellular localization of murine and human magnesium-dependent neutral sphingomyelinase. J Biol Chem 275(8):5710–5717. https://doi.org/10.1074/jbc.275.8.5710
Comments (0)