Lippi G, Sanchis-Gomar F, Cervellin G (2021) Global epidemiology of atrial fibrillation: an increasing epidemic and public health challenge. Int J Stroke 16(2):217–221
Koretsune Y, Etoh T, Katsuda Y, Suetsugu T, Kumeda K, Sakuma I, Eshima K, Shibuya M, Ando SI, Yokota N, Goto S (2018) Risk profile and 1-year outcome of newly diagnosed atrial fibrillation in Japan-insights from GARFIELD-AF-. Circ J 83(1):67–74
Coderch-Navarro S, Berjano E, Camara O, González-Suárez A (2021) High-power short-duration vs. standard radiofrequency cardiac ablation: comparative study based on an in-silico model. Int J Hyperthermia 38(1):582–592
Leshem E, Zilberman I, Tschabrunn CM, Barkagan M, Contreras-Valdes FM, Govari A, Anter E (2018) High-power and short-duration ablation for pulmonary vein isolation: biophysical characterization. JACC Clin Electrophysiol 4(4):467–479
Garvanski I, Simova I, Angelkov L, Matveev M (2019) Predictors of recurrence of AF in patients after radiofrequency ablation. ECR 14(3):165
Article PubMed PubMed Central Google Scholar
Guerra JM, Jorge E, Raga S, Gálvez-Montón CA, Alonso-Martín CO, Rodríguez-Font E, Cinca J, Viñolas X (2013) Effects of open-irrigated radiofrequency ablation catheter design on lesion formation and complications: in vitro comparison of 6 different devices. J Cardiovasc Electrophysiol 24(10):1157–62
Bourier F, Duchateau J, Vlachos K, Lam A, Martin CA, Takigawa M, Kitamura T, Frontera A, Cheniti G, Pambrun T, Klotz N (2018) High-power short-duration versus standard radiofrequency ablation: insights on lesion metrics. J Cardiovasc Electrophysiol 29(11):1570–1575
Kewcharoen J, Techorueangwiwat C, Kanitsoraphan C, Leesutipornchai T, Akoum N, Bunch TJ, Navaravong L (2021) High-power short duration and low-power long duration in atrial fibrillation ablation: a meta-analysis. J Cardiovasc Electrophysiol 32(1):71–82
Pérez JJ, D’Angelo R, González-Suárez A, Nakagawa H, Berjano E, d’Avila A (2022) Low-energy (360 J) radiofrequency catheter ablation using moderate power—short duration: proof of concept based on in silico modeling. J Interv Card Electrophysiol 66(5):1085–1093
Trujillo M, Berjano E (2013) Review of the mathematical functions used to model the temperature dependence of electrical and thermal conductivities of biological tissue in radiofrequency ablation. Int J Hyperth 29(6):590–597
Trujillo M, Alba J, Berjano E (2012) Relationship between roll-off occurrence and spatial distribution of dehydrated tissue during RF ablation with cooled electrodes. Int J Hyperthermia 28(1):62–68
Bhaskaran A, Barry MA, Pouliopoulos JI, Nalliah C, Qian P, Chik W, Thavapalachandran S, Davis L, McEwan A, Thomas S, Kovoor P (2016) Circuit impedance could be a crucial factor influencing radiofrequency ablation efficacy and safety: a myocardial phantom study of the problem and its correction. J Cardiovasc Electrophysiol 27(3):351–357
Yan S, Gu K, Wu X, Wang W (2020) Computer simulation study on the effect of electrode–tissue contact force on thermal lesion size in cardiac radiofrequency ablation. Int J Hyperthermia 37(1):37–48
Sun Y, Zhu X, Nakamura K (2020) Effects of myocardial fat’s thickness and myocardial impedance on bipolar radiofrequency cathode ablation. IEEE Region Conf. https://doi.org/10.1109/TENCON50793.2020.9293942
González-Suárez A, Pérez JJ, Irastorza RM, D’Avila A, Berjano E (2022) Computer modeling of radiofrequency cardiac ablation: 30 years of bioengineering research. Comput Methods ProgR Biomed 214:106546
González-Suárez A, Trujillo M, Koruth J, d’Avila A, Berjano E (2014) Radiofrequency cardiac ablation with catheters placed on opposing sides of the ventricular wall: computer modelling comparing bipolar and unipolar modes. Int J Hyperthermia 30(6):372–384
González-Suárez A, Berjano E, Guerra JM, Gerardo-Giorda L (2016) Computational modeling of open-irrigated electrodes for radiofrequency cardiac ablation including blood motion–saline flow interaction. PLoS ONE 11(3):e0150356
Article PubMed PubMed Central Google Scholar
Nakagawa H, Wittkampf FH, Yamanashi WS, Pitha JV, Imai S, Campbell B, Arruda M, Lazzara R, Jackman WM (1998) Inverse relationship between electrode size and lesion size during radiofrequency ablation with active electrode cooling. Circ 98(5):458–465
Berjano E, d’Avila A (2013) Lumped element electrical model based on three resistors for electrical impedance in radiofrequency cardiac ablation: estimations from analytical calculations and clinical data. Open Biomed Eng J 7:62–70
Article PubMed PubMed Central Google Scholar
Singh S, Repaka R (2018) Numerical study to establish relationship between coagulation volume and target tip temperature during temperature-controlled radiofrequency ablation. Electromagn Biol Med 37(1):13–22
Zhu X, Yang D, Lu W, Chen W, Wei D, Fukuda K, Shimokawa H (2014) Computer simulation of cathode ablation for atrial fibrillation. IEEE Int Conf Comp Inf Technol. https://doi.org/10.1109/CIT.2014.37
Abraham JP, Sparrow EM (2007) A thermal-ablation bioheat model including liquid-to-vapor phase change, pressure-and necrosis-dependent perfusion, and moisture-dependent properties. Int J Heat Mass Transfer 50(13–14):2537–2544
González-Suárez A, Berjano E, Guerra JM, Gerardo-Giorda L (2015) A computational model of open-irrigated electrode for endocardial RF catheter ablation. IEEE CinC. https://doi.org/10.1109/CIC.2015.7408589
Schutt D, Berjano EJ, Haemmerich D (2009) Effect of electrode thermal conductivity in cardiac radiofrequency catheter ablation: a computational modeling study. Int J Hyperthermia 25(2):99–107
González-Suárez A, Berjano E (2015) Comparative analysis of different methods of modeling the thermal effect of circulating blood flow during RF cardiac ablation. IEEE Trans Biomed Eng 63(2):250–259
Enomoto Y, Nakamura K, Ishii R, Toyoda Y, Asami M, Takagi T, Hashimoto H, Hara H, Sugi K, Moroi M, Nakamura M (2021) Lesion size and adjacent tissue damage assessment with high power and short duration radiofrequency ablation: comparison to conventional radiofrequency ablation power setting. Heart Vessels 36:1438–1444
Barkagan M, Rottmann M, Leshem E, Shen C, Buxton AE, Anter E (2018) Effect of baseline impedance on ablation lesion dimensions: a multimodality concept validation from physics to clinical experience. Circ Arrhythm Electrophysiol 11(10):e006690
Jiang X, Li S, Xiong Q, Zhang C, Peng L, Chen W, Cai Y, Yin Y, Chen S, Ling Z (2023) Effects of different ablation settings on lesion dimensions in an ex vivo swine heart model: Baseline impedance, irrigant, and electrode configuration. J Cardiovasc Electrophysiol 34(1):117–125
Leo M, Pedersen M, Rajappan K, Ginks MR, Hunter RJ, Bowers R, Kalla M, Bashir Y, Betts TR (2020) Power, lesion size index and oesophageal temperature alerts during atrial fibrillation ablation: a randomized study. Circ Arrhythm Electrophysiol 13(10):e008316
Das M, Loveday JJ, Wynn GJ, Gomes S, Saeed Y, Bonnett LJ, Waktare JE, Todd DM, Hall MC, Snowdon RL, Modi S (2017) Ablation index, a novel marker of ablation lesion quality: prediction of pulmonary vein reconnection at repeat electrophysiology study and regional differences in target values. Europace 19(5):775–783
Sun Y, Xiao X, Yin X, Gao L, Yu X, Zhang R, Wang Z, Dai S, Yang Y, Xia Y (2022) Impact of baseline impedance of pulmonary vein antrum on success of catheter ablation for paroxysmal atrial fibrillation guided by ablation index. BMC Cardiovasc Disord 22(1):179
Article PubMed PubMed Central Google Scholar
Shuang T, Kong L, Cheng F, Wang X (2022) Prevalence, Predictors and mechanisms of steam pops in ablation index-guided high-power pulmonary vein isolation. J Cardiovasc Dev Dis 9(12):441
PubMed PubMed Central Google Scholar
Qu L, Guo M, Sun M, Wang R, Zhang N, Li X (2022) Effect of baseline impedance in radiofrequency delivery on lesion characteristics and the relationship between impedance and steam pops. Front Cardiovasc Med 9:872961
Comments (0)