Green, M. A. et al. Solar cell efficiency tables (version 60). Prog. Photovolt. Res. Appl. 30, 687–701 (2022).
Mitzi, D. B., Wang, S., Feild, C. A., Chess, C. A. & Guloy, A. M. Conducting layered organic–inorganic halides containing <110>-oriented perovskite sheets. Science 267, 1473–1476 (1995).
Wehrenfennig, C., Eperon, G. E., Johnston, M. B., Snaith, H. J. & Herz, L. M. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584–1589 (2014).
Herz, L. M. Charge-carrier mobilities in metal halide perovskites: fundamental mechanisms and limits. ACS Energy Lett. 2, 1539–1548 (2017).
Stranks, S. D. et al. Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).
Yang, Z. et al. Enhancing electron diffusion length in narrow-bandgap perovskites for efficient monolithic perovskite tandem solar cells. Nat. Commun. 10, 4498 (2019).
Green, M. A., Jiang, Y., Soufiani, A. M. & Ho-Baillie, A. Optical properties of photovoltaic organic–inorganic lead halide perovskites. J. Phys. Chem. Lett. 6, 4774–4785 (2015).
De Wolf, S. et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5, 1035–1039 (2014).
Liang, J. et al. Defect-engineering-enabled high-efficiency all-inorganic perovskite solar cells. Adv. Mater. 31, 1903448 (2019).
Ledinsky, M. et al. Temperature dependence of the Urbach energy in lead iodide perovskites. J. Phys. Chem. Lett. 10, 1368–1373 (2019).
Mehdizadeh-Rad, H. & Singh, J. Influence of Urbach energy, temperature, and longitudinal position in the active layer on carrier diffusion length in perovskite solar cells. ChemPhysChem 20, 2712–2717 (2019).
Subedi, B. et al. Urbach energy and open-circuit voltage deficit for mixed anion–cation perovskite solar cells. ACS Appl. Mater. Interfaces 14, 7796–7804 (2022).
Unger, E. L. et al. Roadmap and roadblocks for the band gap tunability of metal halide perovskites. J. Mater. Chem. A 5, 11401–11409 (2017).
Hörantner, M. T. et al. The potential of multijunction perovskite solar cells. ACS Energy Lett. 2, 2506–2513 (2017).
Lal, N. N., White, T. P. & Catchpole, K. R. Optics and light trapping for tandem solar cells on silicon. IEEE J. Photovolt. 4, 1380–1386 (2014).
Tong, J. et al. Carrier lifetimes of >1 ms in Sn–Pb perovskites enable efficient all-perovskite tandem solar cells. Science 364, 475–479 (2019).
Hu, S. et al. Optimized carrier extraction at interfaces for 23.6% efficient tin–lead perovskite solar cells. Energy Environ. Sci. 15, 2096–2107 (2022).
Slotcavage, D. J., Karunadasa, H. I. & McGehee, M. D. Light-induced phase segregation in halide-perovskite absorbers. ACS Energy Lett. 1, 1199–1205 (2016).
Conings, B. et al. Structure–property relations of methylamine vapor treated hybrid perovskite CH3NH3PbI3 films and solar cells. ACS Appl. Mater. Interfaces 9, 8092–8099 (2017).
Tan, H. et al. Dipolar cations confer defect tolerance in wide-bandgap metal halide perovskites. Nat. Commun. 9, 3100 (2018).
Jaysankar, M. et al. Minimizing voltage loss in wide-bandgap perovskites for tandem solar cells. ACS Energy Lett. 4, 259–264 (2019).
Tan, W., Bowring, A. R., Meng, A. C., McGehee, M. D. & McIntyre, P. C. Thermal stability of mixed cation metal halide perovskites in air. ACS Appl. Mater. Interfaces 10, 5485–5491 (2018).
Ji, K., Anaya, M., Abfalterer, A. & Stranks, S. D. Halide perovskite light-emitting diode technologies. Adv. Opt. Mater. 9, 2002128 (2021).
Ren, Z., Wang, K., Sun, X. W. & Choy, W. C. H. Strategies toward efficient blue perovskite light-emitting diodes. Adv. Funct. Mater. 31, 2100516 (2021).
Yang, D. et al. Toward stable and efficient perovskite light-emitting diodes. Adv. Funct. Mater. 32, 2109495 (2022).
Liang, X. et al. Promoting energy transfer between quasi-2D perovskite layers toward highly efficient red light-emitting diodes. Small 18, 2204638 (2022).
Liu, Y. et al. Boosting the efficiency of quasi-2D perovskites light-emitting diodes by using encapsulation growth method. Nano Energy 80, 105511 (2021).
Warby, J. H. et al. Revealing factors influencing the operational stability of perovskite light-emitting diodes. ACS Nano 14, 8855–8865 (2020).
Stranks, S. D., Hoye, R. L. Z., Di, D., Friend, R. H. & Deschler, F. The physics of light emission in halide perovskite devices. Adv. Mater. 31, 1803336 (2019).
Wang, Z. et al. Manipulating the trade-off between quantum yield and electrical conductivity for high-brightness quasi-2D perovskite light-emitting diodes. Adv. Funct. Mater. 28, 1804187 (2018).
Caprioglio, P. et al. On the relation between the open‐circuit voltage and quasi‐fermi level splitting in efficient perovskite solar cells. Adv. Energy Mater. 9, 1901631 (2019).
Krückemeier, L., Rau, U., Stolterfoht, M. & Kirchartz, T. How to report record open‐circuit voltages in lead‐halide perovskite solar cells. Adv. Energy Mater. 10, 1902573 (2020).
Nayak, P. K., Mahesh, S., Snaith, H. J. & Cahen, D. Photovoltaic solar cell technologies: analysing the state of the art. Nat. Rev. Mater. 4, 269–285 (2019).
Rau, U., Blank, B., Müller, T. C. M. & Kirchartz, T. Efficiency potential of photovoltaic materials and devices unveiled by detailed-balance analysis. Phys. Rev. Appl. 7, 044016 (2017).
Green, M. A. & Ho-Baillie, A. W. Y. Pushing to the limit: radiative efficiencies of recent mainstream and emerging solar cells. ACS Energy Lett. 4, 1639–1644 (2019).
Almora, O. et al. Quantifying the absorption onset in the quantum efficiency of emerging photovoltaic devices. Adv. Energy Mater. 11, 2100022 (2021).
Chen, H. et al. Regulating surface potential maximizes voltage in all-perovskite tandems. Nature 613, 676–681 (2023).
Jiang, Q. et al. Compositional texture engineering for highly stable wide-bandgap perovskite solar cells. Science 378, 1295–1300 (2022).
Lin, R. et al. All-perovskite tandem solar cells with 3D/3D bilayer perovskite heterojunction. Nature https://doi.org/10.1038/s41586-023-06278-z (2023).
Knight, A. J. & Herz, L. M. Preventing phase segregation in mixed-halide perovskites: a perspective. Energy Environ. Sci. 13, 2024–2046 (2020).
Barker, A. J. et al. Defect-assisted photoinduced halide segregation in mixed-halide perovskite thin films. ACS Energy Lett. 2, 1416–1424 (2017).
Yoon, S. J. et al. Tracking iodide and bromide ion segregation in mixed halide lead perovskites during photoirradiation. ACS Energy Lett. 1, 290–296 (2016).
Motti, S. G. et al. Phase segregation in mixed-halide perovskites affects charge-carrier dynamics while preserving mobility. Nat. Commun. 12, 6955 (2021).
Mahesh, S. et al. Revealing the origin of voltage loss in mixed-halide perovskite solar cells. Energy Environ. Sci. 13, 258–267 (2020).
Caprioglio, P. et al. Nano-emitting heterostructures violate optical reciprocity and enable efficient photoluminescence in halide-segregated methylammonium-free wide bandgap perovskites. ACS Energy Lett. 6, 419–428 (2021).
Peña-Camargo, F. et al. Halide segregation versus interfacial recombination in bromide-rich wide-gap perovskite solar cells. ACS Energy Lett. 5, 2728–2736 (2020).
Wang, Z. et al. Suppressed phase segregation for triple-junction perovskite solar cells. Nature https://doi.org/10.1038/s41586-023-06006-7 (2023).
Comments (0)