The effect of NaCl, pH, and phosphate on biofilm formation and exopolysaccharide production by high biofilm producers of Bacillus strains

Ansari FA, Ahmad I, Pichtel J (2019) Growth stimulation and alleviation of salinity stress to wheat by the biofilm forming Bacillus pumilus strain FAB10. Appl Soil Ecol 143:45–54. https://doi.org/10.1016/j.apsoil.2019.05.023

Article  Google Scholar 

Bhatia R, Ruppel S, Narula N (2008) Diversity studies of Azotobacter spp. from cotton-wheat cropping systems of India. J Basic Microbiol 48:455–463. https://doi.org/10.1002/jobm.200800059

Article  CAS  PubMed  Google Scholar 

Çam S, Bicek S (2023) The effects of temperature, salt, and phosphate on biofilm and exopolysaccharide production by Azotobacter spp. Arch Microbiol 205:87. https://doi.org/10.1007/s00203-023-03428-9

Article  CAS  PubMed  Google Scholar 

Çam S, Brinkmeyer R (2020a) The effects of temperature, pH, and iron on biofilm formation by clinical versus environmental strains of Vibrio vulnificus. Folia Microbiol 65:557–566. https://doi.org/10.1007/s12223-019-00761-9

Article  CAS  Google Scholar 

Çam S, Brinkmeyer R (2020b) Differential expression of vvhA and CPS operon allele 1 genes in Vibrio vulnificus under biofilm and planktonic conditions. Antonie Leeuwenhoek 113:1437–1446. https://doi.org/10.1007/s10482-020-01452-z

Article  CAS  PubMed  Google Scholar 

Çam S, Brinkmeyer R, Schwarz JR (2019) Quantitative PCR enumeration of vcgC and 16S rRNA type A and B genes as virulence indicators for environmental and clinical strains of Vibrio vulnificus in Galveston Bay oysters. Can J Microbiol 65:613–621. https://doi.org/10.1139/cjm-2018-0399

Article  CAS  PubMed  Google Scholar 

Çam S, Küçük Ç, Almaca A (2023) Bacillus strains exhibit various plant growth promoting traits and their biofilm-forming capability correlates to their salt stress alleviation effect on maize seedlings. J Biotechnol 369:35–42. https://doi.org/10.1016/j.jbiotec.2023.05.004

Article  CAS  PubMed  Google Scholar 

Çam S, Küçük Ç, Cevheri C (2022) The effect of salinity-resistant biofilm-forming Azotobacter spp. on salt tolerance in maize growth. Zemdirbyste-Agriculture 109:349–358. https://doi.org/10.13080/z-a.2022.109.045

Danhorn T, Hentzer M, Givskov M, Parsek MR, Fuqua C (2004) Phosphorus limitation enhances biofilm formation of the plant pathogen Agrobacterium tumefaciens through the PhoR-PhoB regulatory system. J Bacteriol 186:4492–4501. https://doi.org/10.1128/JB.186.14.4492-4501.2004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Desmond P, Best JP, Morgenroth E, Derlon N (2018) Linking composition of extracellular polymeric substances (EPS) to the physical structure and hydraulic resistance of membrane biofilms. Water Res 132:211–221. https://doi.org/10.1016/j.watres.2017.12.058

Article  CAS  PubMed  Google Scholar 

Fessia A, Barra P, Barros G, Nesci A (2022) Could Bacillus biofilms enhance the effectivity of biocontrol strategies in the phyllosphere? J Appl Microbiol 133:2148–2166. https://doi.org/10.1111/jam.15596

Article  CAS  PubMed  Google Scholar 

Fitzpatrick F, Humphreys H, Smyth E, Kennedy CA, O’Gara JP (2002) Environmental regulation of biofilm formation in intensive care unit isolates of Staphylococcus epidermidis. J Hosp Infect 52:212–218. https://doi.org/10.1053/jhin.2002.1309

Article  CAS  PubMed  Google Scholar 

Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633. https://doi.org/10.1038/nrmicro2415

Article  CAS  PubMed  Google Scholar 

Gao T, Foulston L, Chai Y, Wang Q, Losick R (2015) Alternative modes of biofilm formation by plant-associated Bacillus cereus. Microbiol Open 4:452–464

Article  CAS  Google Scholar 

Hamadi F, Latrache H, Mabrrouki M, Elghmari A, Outzourhit A, Ellouali M, Chtaini A (2005) Effect of pH on distribution and adhesion of Staphylococcus aureus to glass. J Adhes Sci Technol 19:73–85. https://doi.org/10.1163/1568561053066891

Article  CAS  Google Scholar 

Haque MM, Biswas MS, Mosharaf MK, Haque MA, Islam MS, Nahar K, Islam MM, Shozib HB, Islam MM, Elahi FE (2022) Halotolerant biofilm-producing rhizobacteria mitigate seawater-induced salt stress and promote growth of tomato. Sci Rep 12(1):5599. https://doi.org/10.1038/s41598-022-09519-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Haque MM, Khatun M, Mosharaf MK, Rahman A, Haque MA, Nahar K (2023) Biofilm producing probiotic bacteria enhance productivity and bioactive compounds in tomato. Biocatal Agric Biotechnol 50:102673. https://doi.org/10.1016/j.bcab.2023.102673

Article  CAS  Google Scholar 

Haque MM, Mosharaf MK, Khatun M, Haque MA, Biswas MS, Islam MS, Islam MM, Shozib HB, Miah MMU, Molla AH, Siddiquee MA (2020) Biofilm producing rhizobacteria with multiple plant growth-promoting traits promote growth of tomato under water-deficit stress. Front Microbiol 11:542053. https://doi.org/10.3389/fmicb.2020.542053

Article  PubMed  PubMed Central  Google Scholar 

Haque MM, Oliver MMH, Nahar K, Alam MZ, Hirata H, Tsuyumu S (2017) CytR homolog of Pectobacterium carotovorum subsp. carotovorum controls air-liquid biofilm formation by regulating multiple genes involved in cellulose production, c-di-GMP signaling, motility, and type III secretion system in response to nutritional and environmental signals. Front Microbiol 8:972. https://doi.org/10.3389/fmicb.2017.00972

Harjai K, Khandwaha RK, Mittal R, Yadav V, Gupta V, Sharma S (2005) Effect of pH on production of virulence factors by biofilm cells of Pseudomonas aeruginosa. Folia Microbiol 50:99–102. https://doi.org/10.1007/BF02931455

Article  CAS  Google Scholar 

Hentzer M, Teitzel Gail M, Balzer Grant J, Heydorn A, Molin S, Givskov M, Parsek Matthew R (2001) Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol 183:5395–5401. https://doi.org/10.1128/JB.183.18.5395-5401.2001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (eds) (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williams and Wilkins, Baltimore

Google Scholar 

Hoštacká A, Čižnár I, Štefkovičová M (2010) Temperature and pH affect the production of bacterial biofilm. Folia Microbiol 55:75–78. https://doi.org/10.1007/s12223-010-0012-y

Article  CAS  Google Scholar 

Huelsenbeck JP, Ronquist F (2001) Mrbayes: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755. https://doi.org/10.1093/bioinformatics/17.8.754

Article  CAS  PubMed  Google Scholar 

Jefferson KK (2004) What drives bacteria to produce a biofilm? FEMS Microbiol Lett 236:163–173. https://doi.org/10.1016/j.femsle.2004.06.005

Article  CAS  PubMed  Google Scholar 

Kasim WA, Gaafar RM, Abou-Ali RM, Omar MN, Hewait HM (2016) Effect of biofilm forming plant growth promoting rhizobacteria on salinity tolerance in barley. Ann Agric Sci 61:217–227. https://doi.org/10.1016/j.aoas.2016.07.003

Article  Google Scholar 

Mendrygal KE, González JE (2000) Environmental regulation of exopolysaccharide production in Sinorhizobium meliloti. J Bacteriol 182:599–606. https://doi.org/10.1128/jb.182.3.599-606.2000

Article  CAS  PubMed  PubMed Central  Google Scholar 

Monds RD, Silby MW, Mahanty HK (2001) Expression of the Pho regulon negatively regulates biofilm formation by Pseudomonas aureofaciens PA147-2. Mol Microbiol 42:415–426. https://doi.org/10.1046/j.1365-2958.2001.02641.x

Article  CAS  PubMed  Google Scholar 

Morcillo RJL, Manzanera M (2021) The effects of plant-associated bacterial exopolysaccharides on plant abiotic stress tolerance. Metabolites 11:337. https://doi.org/10.3390/metabo11060337

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nostro A, Cellini L, Di Giulio M, D’Arrigo M, Marino A, Blanco AR, Favaloro A, Cutroneo G, Bisignano G (2012) Effect of alkaline pH on staphylococcal biofilm formation. APMIS 120:733–742. https://doi.org/10.1111/j.1600-0463.2012.02900.x

Article  CAS  PubMed  Google Scholar 

Prasanna R, Triveni S, Bidyarani N, Babu S, Yadav K, Adak A, Khetarpal S, Pal M, Shivay YS, Saxena AK (2014) Evaluating the efficacy of cyanobacterial formulations and biofilmed inoculants for leguminous crops. Arch Agron Soil Sci 60:349–366. https://doi.org/10.1080/03650340.2013.792407

Article  Google Scholar 

Rinaudi LV, Giordano W (2010) An integrated view of biofilm formation in rhizobia. FEMS Microbiol Lett 304:1–11. https://doi.org/10.1111/j.1574-6968.2009.01840.x

Article  CAS  PubMed  Google Scholar 

Seneviratne G, Thilakaratne R, Jayasekara A, Seneviratne K, Padmathilake KRE, De Silva M (2009) Developing beneficial microbial biofilms on roots of non legumes: A novel biofertilizing technique. In: Khan MS, Zaidi A, Musarrat J (eds) Microbial strategies for crop improvement. Springer, Berlin, Heidelberg, pp 51–62

Chapter  Google Scholar 

Sharipova M, Rudakova N, Mardanova A, Evtugyn V, Akosah Y, Danilova I, Suleimanova A (2023) Biofilm formation by mutant strains of bacilli under different stress conditions. Microorganisms 11:1486. https://doi.org/10.3390/microorganisms11061486

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stepanović S, Vuković D, Hola V, Bonaventura GD, Djukić S, Ćirković I, Ruzicka F (2007) Quantification of biofilm in microtiter plates: Overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 115:891–899. https://doi.org/10.1111/j.1600-0463.2007.apm_630.x

Article  PubMed  Google Scholar 

Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526. https://doi.org/10.1093/oxfordjournals.molbev.a040023

Article  CAS 

Comments (0)

No login
gif