The use of weighted multiple linear regression to estimate QTL × QTL × QTL interaction effects of winter wheat (Triticum aestivum L.) doubled-haploid lines

Akaike H (1998) Information theory and an extension of the maximum likelihood principle. In: Parzen E, Tanabe K, Kitagawa G (eds) Selected Papers of Hirotugu Akaike. Springer Series in Statistics (Perspectives in Statistics). Springer, New York, New York, USA, 199–213. https://doi.org/10.1007/978-1-4612-1694-0_15

Ali M, Zhang L, DeLacy I, Arief V, Dieters M, Pfeiffer WH, Wang J, Lu H (2020) Modeling and simulation of recurrent phenotypic and genomic selections in plant breeding under the presence of epistasis. Crop J 8:866–877. https://doi.org/10.1016/j.cj.2020.04.002

Article  Google Scholar 

Ali F, Chen W, Fiaz S, Wang Y, Wei X, Xie L, Jiao G, Shao G, Hu S, Tang S, Sheng Z, Hu P (2022) QTL Mapping for grain appearance quality traits using doubled haploid population of rice under different environments. Pak J Bot 54:1265–1275. https://doi.org/10.30848/PJB2022-4(4)

Article  CAS  Google Scholar 

Arif MAR, Agacka-Mołdoch M, Qualset CO, Börner A (2022) Mapping of additive and epistatic QTLs linked to seed longevity in bread wheat (Triticum aestivum L.). Cereal Res Commun 50:709–715. https://doi.org/10.1007/s42976-021-00240-3

Article  CAS  Google Scholar 

Barmukh R, Soren KR, Madugula P, Gangwar P, Shanmugavadivel PS, Bharadwaj C, Konda AK, Chaturvedi SK, Bhandari A, Rajain K, Singh NP, Roorkiwal M, Rajeev K, Varshney RK (2021) Construction of a high-density genetic map and QTL analysis for yield, yield components and agronomic traits in chickpea (Cicer arietinum L.). PLoS ONE 16(5):e0251669. https://doi.org/10.1371/journal.pone.0251669

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bateson W, Mendel G (1902) Mendel’s principles of heredity. Cambridge University Press, UK

Book  Google Scholar 

Beheshtizadeh H, Fakheri BA, Aghnoum R, Mahdinezhad N, Pourdad SS, Masoudi B (2018) QTL mapping of grain yield and its components under normal and drought stress conditions in barley (Hordeum vulgare L.). Indian J Genet Plant Breed 78:69–80. https://doi.org/10.5958/0975-6906.2018.00008.1

Article  Google Scholar 

Bocianowski J (2013) Epistasis interaction of QTL effects as a genetic parameter influencing estimation of the genetic additive effect. Genet Mol Biol 36(1):93–100. https://doi.org/10.1590/S1415-47572013000100013

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bocianowski J, Krajewski P (2009) Comparison of the genetic additive effect estimators based on phenotypic observations and on molecular marker data. Euphytica 165:113–122. https://doi.org/10.1007/s10681-008-9770-x

Article  Google Scholar 

Bocianowski J, Warzecha T, Nowosad K, Bathelt R (2019) Genotype by environment interaction using AMMI model and estimation of additive and epistasis gene effects for 1000-kernel weight in spring barley (Hordeum vulgare L.). J Appl Genetics 60:127–135. https://doi.org/10.1007/s13353-019-00490-2

Article  CAS  Google Scholar 

Bokore FE, Cuthbert RD, Knox RE, Campbell HL, Meyer B, N’Diaye A, Pozniak CJ, DePauw R (2022) Main effect and epistatic QTL affecting spike shattering and association with plant height revealed in two spring wheat (Triticum aestivum L.) populations. Theor Appl Genet 135:1143–1162. https://doi.org/10.1007/s00122-021-03980-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bonas U, Van der Ackerveken G (1999) Gene-for-gene interactions: bacterial avirulence proteins specify plant disease resistance. Curr Opin Microbiol 2(1):94–98. https://doi.org/10.1016/S1369-5274(99)80016-2

Article  CAS  PubMed  Google Scholar 

Brading PA, Verstappen ECP, Kema GHJ, Brown JKM (2002) A gene-for-gene relationship between wheat and Mycosphaerella graminicola, the Septoria tritici blotch pathogen. Phytopathology 92(4):439–445. https://doi.org/10.1094/PHYTO.2002.92.4.439

Article  PubMed  Google Scholar 

Brem RB, Kruglyak L (2005) The landscape of genetic complexity across 5,700 gene expression traits in yeast. Proc Natl Acad Sci USA 102(5):1572–1577. https://doi.org/10.1073/pnas.0408709102

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brown JKM, Chartrain L, Lasserre-Zuber P, Saintenac C (2015) Genetics of resistance to Zymoseptoria tritici and applications to wheat breeding. Fungal Genet Biol 79:33–41. https://doi.org/10.1016/j.fgb.2015.04.017

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cullis BR, Smith AB, Cocks NA, Butler DG (2020) The design of early-stage plant breeding trials using genetic relatedness. JABES 25:553–578. https://doi.org/10.1007/s13253-020-00403-5

Article  Google Scholar 

Cyplik A, Bocianowski J (2022) Analytical and numerical comparisons of two methods of estimation of additive × additive × additive interaction of QTL effects. J Appl Genet 63:213–221. https://doi.org/10.1007/s13353-021-00676-7

Article  CAS  PubMed  Google Scholar 

Cyplik A, Bocianowski J (2023) A comparison of methods to estimate additive–by–additive–by–additive of QTL×QTL×QTL interaction effects by Monte Carlo simulation studies. Int J Mol Sci 24(12):10043. https://doi.org/10.3390/ijms241210043

Article  PubMed  PubMed Central  Google Scholar 

Cyplik A, Sobiech A, Tomkowiak A, Bocianowski J (2022) Genetic parameters for selected traits of inbred lines of maize (Zea mays L.). Appl Sci 12(14):6961. https://doi.org/10.3390/app12146961

Article  CAS  Google Scholar 

Cyplik A, Czyczyło-Mysza IM, Jankowicz-Cieslak J, Bocianowski J (2023) QTL×QTL×QTL interaction effects for total phenolic content of wheat mapping population of CSDH lines under drought stress by weighted multiple linear regression. Agriculture 13(4):850. https://doi.org/10.3390/agriculture13040850

Article  CAS  Google Scholar 

Devi R, Ram S, Rana V, Malik VK, Pande V, Singh GP (2019) QTL mapping for salt tolerance associated traits in wheat (Triticum aestivum L.). Euphytica 215:210. https://doi.org/10.1007/s10681-019-2533-z

Article  CAS  Google Scholar 

Dhariwal R, Fedak G, Dion Y, Pozniak C, Laroche A, Eudes F, Randhawa HS (2018) High density single nucleotide polymorphism (SNP) mapping and quantitative trait loci (QTL) analysis in a biparental spring triticale population localized major and minor effect Fusarium head blight resistance and associated traits QTL. Genes 9:19. https://doi.org/10.3390/genes9010019

Article  CAS  PubMed  PubMed Central  Google Scholar 

Erenstein O, Jaleta M, Mottaleb KA, Sonder K, Donovan J (2022) Braun HJ (2022) Global trends in wheat production, consumption and trade. In: Reynolds MP, Braun HJ (eds) Wheat Improvement Food Security in a Changing Climate. Springer, pp 47–66

Chapter  Google Scholar 

Farokhzadeh S, Fakheri BA, Nezhad NM, Tahmasebi S, Mirsoleimani A (2019) Mapping QTLs of flag leaf morphological and physiological traits related to aluminum tolerance in wheat (Triticum aestivum L.). Physiol Mol Biol Plants 25:975–990. https://doi.org/10.1007/s12298-019-00670-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Figueroa M, Hammond-Kosack KE, Solomon P (2018) A review of wheat diseases - a field perspective. Mol Plant Pathol 19(6):1523–1536. https://doi.org/10.1111/mpp.12618

Article  PubMed  Google Scholar 

Graham RD, Welch RM, Bouis HE (2001) Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: principles, perspectives and knowledge gaps. Adv Agron 70:77–142. https://doi.org/10.1016/S0065-2113(01)70004-1

Article  Google Scholar 

Gurung S, Mamidi S, Bonman JM, Xiong M, Brown-Guedira G, Adhikari TB (2014) Genome-wide association study reveals novel quantitative trait loci associated with resistance to multiple leaf spot diseases of spring wheat. PLoS ONE 9:e108179. https://doi.org/10.1371/journal.pone.0108179

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hartman JL, Garvik B, Hartwell L (2001) Principles for the buffering of genetic variation. Science 291(5506):1001–1004. https://doi.org/10.1126/science.291.5506.1001

Article  CAS  PubMed  Google Scholar 

Jarvis JP, Cheverud JM (2011) Mapping the epistatic network underlying murine reproductive fat pad mass. Genetics 187(3):613–623. https://doi.org/10.1534/genetics.110.124677

Article  Google Scholar 

Kaczmarek Z, Surma M, Adamski T (1988) Epistatic effects in estimation of the number of genes on the basis of doubled haploid lines. Genetica Polonica 29(3–4):353–359

Google Scholar 

Khan SU, Saeed S, Khan MHU, Fan C, Ahmar S, Arriagada O, Shahzad R, Branca F, Mora-Poblete F (2021) Advances and Challenges for QTL Analysis and GWAS in the plant-breeding of high-yielding: a focus on rapeseed. Biomolecules 11(10):1516. https://doi.org/10.3390/biom11101516

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kollers S, Rodemann B, Ling J, Korzun V, Ebmeyer E, Argillier O, Hinze M, Plieske J, Kulosa D, Ganal MW, Röder MS (2013) Genetic architecture of resistance to Septoria tritici blotch (Mycosphaerella graminicola) in European winter wheat. Mol Breed 32(2):411–423. https://doi.org/10.1007/s11032-013-9880-6

Article  CAS  Google Scholar 

Krajewski P, Bocianowski J, Gawłowska M, Kaczmarek Z, Pniewski T, Święcicki W, Wolko B (2012) QTL for yield componenets and protein content: a multienvironment study of two pea (Pisum sativum L.) populations. Euphytica 183:323–336. https://doi.org/10.1007/s10681-011-0472-4

Article  CAS  Google Scholar 

Ku LX, Sun ZH, Wang CL, Zhang J, Zhao RF, Liu HY, Tai GQ, Chen YH (2012) QTL mapping and epistasis analysis of brace root traits in maize. Mol Breed 30:697–708. https://doi.org/10.1007/s11032-011-9655-x

Article  Google Scholar 

Labroo MR, Studer AJ, Rutkoski JE (2021) Heterosis and hybrid crop breeding: a multidisciplinary review. Front Genet 12:643761. https://doi.org/10.3389/fgene.2021.643761

Article  CAS  PubMed  PubMed Central  Google Scholar 

Langlands-Perry C, Cuenin M, Bergez C, Krima SB, Gélisse S, Sourdille P, Valade R, Marcel TC (2022) Resistance of the wheat cultivar ‘Renan’ to Septoria leaf blotch explained by a combination of strain specific and strain non-specific QTL mapped on an ultra-dense genetic map. Genes 13(1):100. https://doi.org/10.3390/genes13010100

Article  CAS 

Comments (0)

No login
gif