Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 Countries. CA. 2021;71(3):209–49.
Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA. 2023;73(1):17–48.
Weigelt B, Peterse JL. van ’t Veer LJ: Breast cancer metastasis: markers and models. Nat Rev Cancer. 2005;5(8):591–602.
Article CAS PubMed Google Scholar
Hanna WM, Slodkowska E, Lu FI, Nafisi H, Nofech-Mozes S. Comparative analysis of human epidermal growth factor receptor 2 testing in breast cancer according to 2007 and 2013 american society of clinical oncology/college of American pathologists guideline recommendations. J Clin Oncol. 2017;35(26):3039–45.
Article CAS PubMed Google Scholar
Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH, Allred DC, Bartlett JM, Bilous M, Fitzgibbons P, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol. 2013;31(31):3997–4013.
Vihervuori H, Korpinen K, Autere TA, Repo H, Talvinen K, Kronqvist P. Varying outcomes of triple-negative breast cancer in different age groups-prognostic value of clinical features and proliferation. Breast Cancer Res Treat. 2022;196(3):471–82.
Article CAS PubMed PubMed Central Google Scholar
Li N, Wei J, Zhang Q, Liu B: Methyltransferase-like 3 enhances cell proliferation and cisplatin resistance in natural killer/T-cell lymphoma through promoting N6-methyladenosine modification and the stability of staphylococcal nuclease and Tudor domain-containing protein 1 mRNA. Anti-Cancer Drugs 2022.
Zhao Y, Ren P, Yang Z, Wang L, Hu C: Inhibition of SND1 overcomes chemoresistance in bladder cancer cells by promoting ferroptosis. Oncol Rep 2023, 49(1).
Ha C, Hu L, Ren Y, Yang J, Xin L. SND1 confers chemoresistance to cisplatin-induced apoptosis by targeting GAS6-AKT in SKOV3 ovarian cancer cells. Med Oncol. 2022;39(11):169.
Article CAS PubMed Google Scholar
Yoo BK, Santhekadur PK, Gredler R, Chen D, Emdad L, Bhutia S, Pannell L, Fisher PB, Sarkar D. Increased RNA-induced silencing complex (RISC) activity contributes to hepatocellular carcinoma. Hepatology. 2011;53(5):1538–48.
Article CAS PubMed Google Scholar
Tsuchiya N, Nakagama H. MicroRNA, SND1, and alterations in translational regulation in colon carcinogenesis. Mutat Res. 2010;693(1–2):94–100.
Article CAS PubMed Google Scholar
Xin L, Zhao R, Lei J, Song J, Yu L, Gao R, Ha C, Ren Y, Liu X, Liu Y, et al. SND1 acts upstream of SLUG to regulate the epithelial-mesenchymal transition (EMT) in SKOV3 cells. FASEB J. 2019;33(3):3795–806.
Article CAS PubMed Google Scholar
Shen M, Wei Y, Kim H, Wan L, Jiang YZ, Hang X, Raba M, Remiszewski S, Rowicki M, Wu CG, et al. Small-molecule inhibitors that disrupt the MTDH-SND1 complex suppress breast cancer progression and metastasis. Nat Cancer. 2022;3(1):43–59.
Article CAS PubMed Google Scholar
Shen M, Smith HA, Wei Y, Jiang YZ, Zhao S, Wang N, Rowicki M, Tang Y, Hang X, Wu S, et al. Pharmacological disruption of the MTDH-SND1 complex enhances tumor antigen presentation and synergizes with anti-PD-1 therapy in metastatic breast cancer. Nat Cancer. 2022;3(1):60–74.
Article CAS PubMed Google Scholar
Yu L, Di Y, Xin L, Ren Y, Liu X, Sun X, Zhang W, Yao Z, Yang J. SND1 acts as a novel gene transcription activator recognizing the conserved Motif domains of Smad promoters, inducing TGFbeta1 response and breast cancer metastasis. Oncogene. 2017;36(27):3903–14.
Article CAS PubMed Google Scholar
Yu L, Xu J, Liu J, Zhang H, Sun C, Wang Q, Shi C, Zhou X, Hua D, Luo W, et al. The novel chromatin architectural regulator SND1 promotes glioma proliferation and invasion and predicts the prognosis of patients. Neuro Oncol. 2019;21(6):742–54.
Article CAS PubMed PubMed Central Google Scholar
Bucker L, Lehmann U: CDH1 (E-cadherin) Gene methylation in human breast cancer: critical appraisal of a long and twisted story. Cancers 2022, 14(18).
Ratze MAK, Koorman T, Sijnesael T, Bassey-Archibong B, van de Ven R, Enserink L, Visser D, Jaksani S, Viciano I, Bakker ERM, et al. Loss of E-cadherin leads to Id2-dependent inhibition of cell cycle progression in metastatic lobular breast cancer. Oncogene. 2022;41(21):2932–44.
Article PubMed PubMed Central Google Scholar
O’Brien SJ, Fiechter C, Burton J, Hallion J, Paas M, Patel A, Rochet A, Scheurlen K, Gardner S, Eichenberger M, et al. Long non-coding RNA ZFAS1 is a major regulator of epithelial-mesenchymal transition through miR-200/ZEB1/E-cadherin, vimentin signaling in colon adenocarcinoma. Cell Death Discov. 2021;7(1):61.
Article CAS PubMed PubMed Central Google Scholar
Li M, Rao X, Cui Y, Zhang L, Li X, Wang B, Zheng Y, Teng L, Zhou T, Zhuo W. The keratin 17/YAP/IL6 axis contributes to E-cadherin loss and aggressiveness of diffuse gastric cancer. Oncogene. 2022;41(6):770–81.
Article CAS PubMed Google Scholar
Kielbik M, Szulc-Kielbik I, Klink M: E-cadherin expression in relation to clinicopathological parameters and survival of patients with epithelial ovarian cancer. Int J Mol Sci 2022, 23(22): 14383
Luo M, Li J, Yang Q, Xu S, Zhang K, Chen J, Zhang S, Zheng S, Zhou J. N4BP3 promotes breast cancer metastasis via NEDD4-mediated E-cadherin ubiquitination and degradation. Cancer Lett. 2022;550: 215926.
Article CAS PubMed Google Scholar
Wijshake T, Zou Z, Chen B, Zhong L, Xiao G, Xie Y, Doench JG, Bennett L, Levine B: Tumor-suppressor function of Beclin 1 in breast cancer cells requires E-cadherin. In: Proceedings of the National Academy of Sciences of the United States of America 2021, 118(5).
Bai X, Jiang X, Liu Y, Wang Y, Song G, Qiu H, Zhang Q. Kruppel-like factor 9 upregulates E-cadherin transcription and represses breast cancer invasion and metastasis. Am J Cancer Res. 2021;11(7):3660–73.
CAS PubMed PubMed Central Google Scholar
Karsten N, Kolben T, Mahner S, Beyer S, Meister S, Kuhn C, Schmoeckel E, Wuerstlein R, Harbeck N, Ditsch N, et al. The role of E-Cadherin expression in primary site of breast cancer. Arch Gynecol Obstet. 2022;305(4):913–20.
Article CAS PubMed Google Scholar
Wang Y, Sun Y, Shang C, Chen L, Chen H, Wang D, Zeng X. Distinct Ring1b complexes defined by DEAD-box helicases and EMT transcription factors synergistically enhance E-cadherin silencing in breast cancer. Cell Death Dis. 2021;12(2):202.
Article CAS PubMed PubMed Central Google Scholar
Vareslija D, Ward E, Purcell SP, Cosgrove NS, Cocchiglia S, O’Halloran PJ, Charmsaz S, Bane FT, Brett FM, Farrell M, et al. Comparative analysis of the AIB1 interactome in breast cancer reveals MTA2 as a repressive partner which silences E-Cadherin to promote EMT and associates with a pro-metastatic phenotype. Oncogene. 2021;40(7):1318–31.
Article CAS PubMed PubMed Central Google Scholar
Lyko F. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat Rev Genet. 2018;19(2):81–92.
Article CAS PubMed Google Scholar
Gao XN, Yan F, Lin J, Gao L, Lu XL, Wei SC, Shen N, Pang JX, Ning QY, Komeno Y, et al. AML1/ETO cooperates with HIF1alpha to promote leukemogenesis through DNMT3a transactivation. Leukemia. 2015;29(8):1730–40.
Article CAS PubMed Google Scholar
Kim G, Kim JY, Lim SC, Lee KY, Kim O, Choi HS. SUV39H1/DNMT3A-dependent methylation of the RB1 promoter stimulates PIN1 expression and melanoma development. FASEB J. 2018;32(10):5647–60.
Article CAS PubMed Google Scholar
Stolzenburg S, Beltran AS, Swift-Scanlan T, Rivenbark AG, Rashwan R, Blancafort P. Stable oncogenic silencing in vivo by programmable and targeted de novo DNA methylation in breast cancer. Oncogene. 2015;34(43):5427–35.
Article CAS PubMed PubMed Central Google Scholar
Li C, Xiong W, Liu X, Xiao W, Guo Y, Tan J, Li Y. Hypomethylation at non-CpG/CpG sites in the promoter of HIF-1alpha gene combined with enhanced H3K9Ac modification contribute to maintain higher HIF-1alpha expression in breast cancer. Oncogenesis. 2019;8(4):26.
Article PubMed PubMed Central Google Scholar
Yu Z, Xiao Q, Zhao L, Ren J, Bai X, Sun M, Wu H, Liu X, Song Z, Yan Y, et al. DNA methyltransferase 1/3a overexpression in sporadic breast cancer is associated with reduced expression of estrogen receptor-alpha/breast cancer susceptibility gene 1 and poor prognosis. Mol Carcinog. 2015;54(9):707–19.
Article CAS PubMed Google Scholar
Liu J, Pang Y, Wang H, Li Y, Sun X, Xu F, Ren H, Liu D. miR-101 inhibits the proliferation and migration of breast cancer cells via downregulating the expression of DNA methyltransferase 3a. Chinese J Cell Mol Immunol. 2016;32(3):299–303.
Iwamoto T, Niikura N, Ogiya R, Yasojima H, Watanabe KI, Kanbayashi C, Tsuneizumi M, Matsui A, Fujisawa T, Iwasa T, et al. Distinct gene expression profiles between primary breast cancers and brain metastases from pair-matched samples. Sci Rep. 2019;9(1):13343.
Article PubMed PubMed Central Google Scholar
Diao C, Guo P, Yang W, Sun Y, Liao Y, Yan Y, Zhao A, Cai X, Hao J, Hu S, et al. SPT6 recruits SND1 to co-activate human telomerase reverse transcriptase to promote colon cancer progression. Mol Oncol. 2021;15(4):1180–202.
Article CAS PubMed PubMed Central Google Scholar
Jariwala N, Rajasekaran D, Mendoza RG, Shen XN, Siddiq A, Akiel MA, Robertson CL, Subler MA, Windle JJ, Fisher PB, et al. Oncogenic role of SND1 in development and progression of hepatocellular carcinoma. Can Res. 2017;77(12):3306–16.
Santhekadur PK, Das SK, Gredler R, Chen D, Srivastava J, Robertson C, Baldwin AS Jr, Fisher PB, Sarkar D. Multifunction protein staphylococcal nuclease domain containing 1 (SND1) promotes tumor angiogenesis in human hepatocellular carcinoma through novel pathway that involves nuclear factor kappaB and miR-221. J Biol Chem. 2012;287(17):13952–8.
Comments (0)