Deckert M, Engert A, Brück W, et al. Modern concepts in the biology, diagnosis, differential diagnosis and treatment of primary central nervous system lymphoma. Leukemia. 2011;25(12):1797–807. https://doi.org/10.1038/leu.2011.169.
Article CAS PubMed Google Scholar
Houillier C, Soussain C, Ghesquières H, et al. Management and outcome of primary CNS lymphoma in the modern era: an LOC network study. Neurology. 2020;94(10):e1027–39. https://doi.org/10.1212/WNL.0000000000008900.
Article PubMed PubMed Central Google Scholar
Shao L, Xu C, Wu H, et al. Recent progress on primary central nervous system lymphoma-from bench to bedside. Front Oncol. 2021;11: 689843. https://doi.org/10.3389/fonc.2021.689843.
Article CAS PubMed PubMed Central Google Scholar
Grommes C, DeAngelis LM. Primary CNS lymphoma. J Clin Oncol. 2017;35(21):2410–8. https://doi.org/10.1200/JCO.2017.72.7602.
Article CAS PubMed PubMed Central Google Scholar
Schabet M. Epidemiology of primary CNS lymphoma. J Neurooncol. 1999;43(3):199–201. https://doi.org/10.1023/a:1006290032052.
Article CAS PubMed Google Scholar
Schultz C, Scott C, Sherman W, et al. Preirradiation chemotherapy with cyclophosphamide, doxorubicin, vincristine, and dexamethasone for primary CNS lymphomas: initial report of radiation therapy oncology group protocol 88-06. J Clin Oncol. 1996;14(2):556–64. https://doi.org/10.1200/JCO.1996.14.2.556.
Article CAS PubMed Google Scholar
Eyre TA, Kirkwood AA, Wolf J, et al. Stand-alone intrathecal central nervous system (CNS) prophylaxis provide unclear benefit in reducing CNS relapse risk in elderly DLBCL patients treated with R-CHOP and is associated increased infection-related toxicity. Br J Haematol. 2019;187(2):185–94. https://doi.org/10.1111/bjh.16070.
Article CAS PubMed Google Scholar
Gleeson M, Counsell N, Cunningham D, et al. Central nervous system relapse of diffuse large B-cell lymphoma in the rituximab era: results of the UK NCRI R-CHOP-14 versus 21 trial. Ann Oncol. 2017;28(10):2511–6. https://doi.org/10.1093/annonc/mdx353.
Article CAS PubMed PubMed Central Google Scholar
Ferreri AJ, Cwynarski K, Pulczynski E, et al. Chemoimmunotherapy with methotrexate, cytarabine, thiotepa, and rituximab (MATRix regimen) in patients with primary CNS lymphoma: results of the first randomisation of the International Extranodal Lymphoma Study Group-32 (IELSG32) phase 2 trial. Lancet Haematol. 2016;3(5):e217–27. https://doi.org/10.1016/S2352-3026(16)00036-3.
Chen T, Liu Y, Wang Y, et al. Evidence-based expert consensus on the management of primary central nervous system lymphoma in China. J Hematol Oncol. 2022;15(1):136. https://doi.org/10.1186/s13045-022-01356-7.
Article PubMed PubMed Central Google Scholar
Wilson MR, Eyre TA, Kirkwood AA, et al. Timing of high-dose methotrexate CNS prophylaxis in DLBCL: a multicenter international analysis of 1384 patients. Blood. 2022;139(16):2499–511. https://doi.org/10.1182/blood.2021014506.
Article CAS PubMed Google Scholar
von Baumgarten L, Illerhaus G, Korfel A, Schlegel U, Deckert M, Dreyling M. The diagnosis and treatment of primary CNS lymphoma. Dtsch Arztebl Int. 2018;115(25):419–26. https://doi.org/10.3238/arztebl.2018.0419.
Mendez JS, Grommes C. Treatment of primary central nervous system lymphoma: from chemotherapy to small molecules. Am Soc Clin Oncol Educ Book. 2018;38:604–15. https://doi.org/10.1200/EDBK_200829.
Langner-Lemercier S, Houillier C, Soussain C, et al. Primary CNS lymphoma at first relapse/progression: characteristics, management, and outcome of 256 patients from the French LOC network. Neuro Oncol. 2016;18(9):1297–303. https://doi.org/10.1093/neuonc/now033.
Article PubMed PubMed Central Google Scholar
Yu H, Kong H, Li C, et al. Bruton’s tyrosine kinase inhibitors in primary central nervous system lymphoma-evaluation of anti-tumor efficacy and brain distribution. Transl Cancer Res. 2021;10(5):1975–83. https://doi.org/10.21037/tcr-21-50.
Article CAS PubMed PubMed Central Google Scholar
Korfel A, Schlegel U, Herrlinger U, et al. Phase II trial of temsirolimus for relapsed/refractory primary CNS lymphoma. J Clin Oncol. 2016;34(15):1757–63. https://doi.org/10.1200/JCO.2015.64.9897.
Article CAS PubMed Google Scholar
Ghesquieres H, Chevrier M, Laadhari M, et al. Lenalidomide in combination with intravenous rituximab (REVRI) in relapsed/refractory primary CNS lymphoma or primary intraocular lymphoma: a multicenter prospective “proof of concept” phase II study of the French Oculo-Cerebral lymphoma (LOC) Network and the Lymphoma Study Association (LYSA)†. Ann Oncol. 2019;30(4):621–8. https://doi.org/10.1093/annonc/mdz032.
Article CAS PubMed Google Scholar
Roberts AW, Davids MS, Pagel JM, et al. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N Engl J Med. 2016;374(4):311–22. https://doi.org/10.1056/NEJMoa1513257.
Article CAS PubMed Google Scholar
Zhang X, Wu Y, Sun X, et al. The PI3K/AKT/mTOR signaling pathway is aberrantly activated in primary central nervous system lymphoma and correlated with a poor prognosis. BMC Cancer. 2022;22(1):190. https://doi.org/10.1186/s12885-022-09275-z.
Article CAS PubMed PubMed Central Google Scholar
Tarantelli C, Gaudio E, Hillmann P, et al. The novel TORC1/2 kinase inhibitor PQR620 has anti-tumor activity in lymphomas as a single agent and in combination with venetoclax. Cancers (Basel). 2019;11(6):775. https://doi.org/10.3390/cancers11060775.
Article CAS PubMed Google Scholar
Jain N, Singh S, Laliotis G, et al. Targeting phosphatidylinositol 3 kinase-β and -δ for Bruton tyrosine kinase resistance in diffuse large B-cell lymphoma. Blood Adv. 2020;4(18):4382–92. https://doi.org/10.1182/bloodadvances.2020001685.
Article CAS PubMed PubMed Central Google Scholar
Zhang X, Liu Y. Targeting the PI3K/AKT/mTOR signaling pathway in primary central nervous system lymphoma: current status and future prospects. CNS Neurol Disord Drug Targets. 2020;19(3):165–73. https://doi.org/10.2174/1871527319666200517112252.
Article CAS PubMed Google Scholar
Grommes C, Gavrilovic I, Miller AM, et al. Phase Ib of copanlisib in combination with ibrutinib in recurrent/refractory primary CNS lymphoma (PCNSL). Blood. 2019;134(Suppl 1):1598. https://doi.org/10.1182/blood-2019-126214.
Rahmani M, Aust MM, Benson EC, Wallace L, Friedberg J, Grant S. PI3K/mTOR inhibition markedly potentiates HDAC inhibitor activity in NHL cells through BIM- and MCL-1-dependent mechanisms in vitro and in vivo. Clin Cancer Res. 2014;20(18):4849–60. https://doi.org/10.1158/1078-0432.CCR-14-0034.
Article CAS PubMed PubMed Central Google Scholar
Fan F, Liu P, Bao R, et al. A dual PI3K/HDAC inhibitor induces immunogenic ferroptosis to potentiate cancer immune checkpoint therapy. Cancer Res. 2021;81(24):6233–45. https://doi.org/10.1158/0008-5472.CAN-21-1547.
Article CAS PubMed Google Scholar
Kapadia B, Nanaji NM, Bhalla K, et al. Fatty acid synthase induced S6Kinase facilitates USP11-eIF4B complex formation for sustained oncogenic translation in DLBCL. Nat Commun. 2018;9(1):829. https://doi.org/10.1038/s41467-018-03028-y.
Article CAS PubMed PubMed Central Google Scholar
Wu W, Bi C, Credille KM, et al. Inhibition of tumor growth and metastasis in non-small cell lung cancer by LY2801653, an inhibitor of several oncokinases, including MET. Clin Cancer Res. 2013;19(20):5699–710. https://doi.org/10.1158/1078-0432.CCR-13-1758.
Article CAS PubMed Google Scholar
Dong Y, Tu R, Liu H, Qing G. Regulation of cancer cell metabolism: oncogenic MYC in the driver’s seat. Signal Transduct Target Ther. 2020;5(1):124. https://doi.org/10.1038/s41392-020-00235-2.
Article PubMed PubMed Central Google Scholar
Kurland JF, Tansey WP. Myc-mediated transcriptional repression by recruitment of histone deacetylase. Cancer Res. 2008;68(10):3624–9. https://doi.org/10.1158/0008-5472.CAN-07-6552.
Article CAS PubMed Google Scholar
Alborzinia H, Flórez AF, Kreth S, et al. MYCN mediates cysteine addiction and sensitizes neuroblastoma to ferroptosis. Nat Cancer. 2022;3(4):471–85. https://doi.org/10.1038/s43018-022-00355-4.
Article CAS PubMed PubMed Central Google Scholar
Anderson GR, Wardell SE, Cakir M, et al. PIK3CA mutations enable targeting of a breast tumor dependency through mTOR-mediated MCL-1 translation. Sci Transl Med. 2016;8(369): 369ra175. https://doi.org/10.1126/scitranslmed.aae0348.
Article CAS PubMed PubMed Central Google Scholar
Martz CA, Ottina KA, Singleton KR, et al. Systematic identification of signaling pathways with potential to confer anticancer drug resistance. Sci Signal. 2014;7(357):ra121. https://doi.org/10.1126/scisignal.aaa1877.
Comments (0)