Inter-observer variation in two-dimensional and three-dimensional ultrasound measurement of papillary thyroid microcarcinoma

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and Mortality Worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

Article  PubMed  Google Scholar 

Cronin KA, Scott S, Firth AU, Sung H, Henley SJ, Sherman RL, et al. Annual report to the nation on the status of cancer, part 1: National cancer statistics. Cancer. 2022;128(24):4251–84.

Article  PubMed  Google Scholar 

Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 american thyroid Association Management Guidelines for adult patients with thyroid nodules and differentiated thyroid Cancer: the american thyroid Association Guidelines Task Force on thyroid nodules and differentiated thyroid Cancer. Thyroid. 2016;26(1):1–133.

Article  PubMed Central  PubMed  Google Scholar 

Sanabria A, Betancourt-Aguero C, Sanchez-Delgado JG, Garcia-Lozano C. Prophylactic Central Neck Lymph Node Dissection in low-risk thyroid carcinoma patients does not decrease the incidence of Locoregional recurrence: a Meta-analysis of Randomized trials. Ann Surg. 2022;276(1):66–73.

Article  PubMed  Google Scholar 

Sugitani I, Ito Y, Takeuchi D, Nakayama H, Masaki C, Shindo H, et al. Indications and strategy for active surveillance of adult low-risk papillary thyroid Microcarcinoma: Consensus statements from the Japan Association of endocrine surgery Task Force on Management for Papillary thyroid Microcarcinoma. Thyroid. 2021;31(2):183–92.

Article  PubMed Central  PubMed  Google Scholar 

Hwangbo Y, Choi JY, Lee EK, Ryu CH, Cho SW, Chung EJ, et al. A cross-sectional survey of patient treatment choice in a Multicenter prospective cohort study on active surveillance of papillary thyroid microcarcinoma (MAeSTro). Thyroid. 2022;32(7):772–80.

Article  CAS  PubMed  Google Scholar 

Chou R, Dana T, Haymart M, Leung AM, Tufano RP, Sosa JA, et al. Active Surveillance Versus thyroid surgery for differentiated thyroid Cancer: a systematic review. Thyroid. 2022;32(4):351–67.

Article  CAS  PubMed  Google Scholar 

Ito Y, Uruno T, Nakano K, Takamura Y, Miya A, Kobayashi K, et al. An observation trial without surgical treatment in patients with papillary microcarcinoma of the thyroid. Thyroid. 2003;13(4):381–7.

Article  PubMed  Google Scholar 

Cho SJ, Suh CH, Baek JH, Chung SR, Choi YJ, Chung KW, et al. Active surveillance for small papillary thyroid Cancer: a systematic review and Meta-analysis. Thyroid. 2019;29(10):1399–408.

Article  PubMed  Google Scholar 

Hwang H, Choi JY, Yu HW, Moon JH, Kim JH, Lee EK et al. Surgical Outcomes in patients with low-risk papillary thyroid Microcarcinoma from MAeSTro Study: Immediate Operation Versus delayed operation following active surveillance a multicenter prospective cohort study. Ann Surg. 2023.

Ito Y, Miyauchi A, Inoue H, Fukushima M, Kihara M, Higashiyama T, et al. An observational trial for papillary thyroid microcarcinoma in japanese patients. World J Surg. 2010;34(1):28–35.

Article  PubMed  Google Scholar 

Tuttle RM, Fagin JA, Minkowitz G, Wong RJ, Roman B, Patel S, et al. Natural history and tumor volume kinetics of papillary thyroid cancers during active surveillance. JAMA Otolaryngol Head Neck Surg. 2017;143(10):1015–20.

Article  PubMed Central  PubMed  Google Scholar 

Ito Y, Miyauchi A, Kudo T, Higashiyama T, Masuoka H, Kihara M, et al. Kinetic analysis of growth activity in enlarging papillary thyroid Microcarcinomas. Thyroid. 2019;29(12):1765–73.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Oh HS, Ha J, Kim HI, Kim TH, Kim WG, Lim DJ, et al. Active surveillance of low-risk papillary thyroid microcarcinoma: a Multi-Center Cohort Study in Korea. Thyroid. 2018;28(12):1587–94.

Article  PubMed  Google Scholar 

Brauer VFH, Eder P, Miehle K, Wiesner TD, Hasenclever H, Paschke R. Interobserver variation for ultrasound determination of thyroid nodule volumes. Thyroid. 2005;15(10):1169–75.

Article  CAS  PubMed  Google Scholar 

Haser GC, Tuttle RM, Su HK, Alon EE, Bergman D, Bernet V, et al. Active surveillance for papillary thyroid Microcarcinoma: New Challenges and Opportunities for the Health Care System. Endocr Pract. 2016;22(5):602–11.

Article  PubMed Central  PubMed  Google Scholar 

Lee HJ, Yoon DY, Seo YL, Kim JH, Baek S, Lim KJ, et al. Intraobserver and Interobserver Variability in Ultrasound measurements of thyroid nodules. J Ultrasound Med. 2018;37(1):173–8.

Article  PubMed  Google Scholar 

Choi YJ, Baek JH, Hong MJ, Lee JH. Inter-Observer Variation in Ultrasound Measurement of the volume and diameter of thyroid nodules. Korean J Radiol. 2015;16(3):560–5.

Article  PubMed Central  PubMed  Google Scholar 

Chung SR, Choi YJ, Lee SS, Kim SO, Lee SA, Jeon MJ, et al. Interobserver Reproducibility in Sonographic Measurement of Diameter and volume of papillary thyroid microcarcinoma. Thyroid. 2021;31(3):452–8.

Article  CAS  PubMed  Google Scholar 

Kim SC, Kim JH, Choi SH, Yun TJ, Wi JY, Kim SA, et al. Off-site evaluation of three-dimensional ultrasound for the diagnosis of thyroid nodules: comparison with two-dimensional ultrasound. Eur Radiol. 2016;26(10):3353–60.

Article  PubMed  Google Scholar 

You JH, Zhuang YF, Lu MZ, Chen L, Chen ZK, Chen XK. Three–Dimensional Ultrasonography in Preoperative and postoperative volume Assessment of the undescended testicle. Med Sci Monit. 2020;26:e924325.

Article  PubMed Central  PubMed  Google Scholar 

Czuczwar P, Wozniak S, Szkodziak P, Milart P, Wozniakowska E, Wrona W, et al. Influence of ulipristal acetate therapy compared with uterine artery embolization on fibroid volume and vascularity indices assessed by three-dimensional ultrasound: prospective observational study. Ultrasound Obstet Gynecol. 2015;45(6):744–50.

Article  CAS  PubMed  Google Scholar 

Boers T, Braak SJ, Versluis M, Manohar S. Matrix 3D ultrasound-assisted thyroid nodule volume estimation and radiofrequency ablation: a phantom study. Eur Radiol Exp. 2021;5(1):31.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Ying M, Pang BS. Three-dimensional ultrasound measurement of cervical lymph node volume. Br J Radiol. 2009;82(980):617–25.

Article  CAS  PubMed  Google Scholar 

Schlögl S, Werner E, Lassmann M, Terekhova J, Muffert S, Seybold S, et al. The use of three-dimensional ultrasound for thyroid volumetry. Thyroid. 2001;11(6):569–74.

Article  PubMed  Google Scholar 

Lyshchik A, Drozd V, Schloegl S, Reiners C. Three-dimensional ultrasonography for volume measurement of thyroid nodules in children. J Ultrasound Med. 2004;23(2):247–54.

Article  PubMed  Google Scholar 

Lyshchik A, Drozd V, Reiners C. Accuracy of three-dimensional ultrasound for thyroid volume measurement in children and adolescents. Thyroid. 2004;14(2):113–20.

Article  PubMed  Google Scholar 

Freesmeyer M, Wiegand S, Schierz JH, Winkens T, Licht K. Multimodal evaluation of 2-D and 3-D ultrasound, computed tomography and magnetic resonance imaging in measurements of the thyroid volume using universally applicable cross-sectional imaging software: a phantom study. Ultrasound Med Biol. 2014;40(7):1453–62.

Article  PubMed  Google Scholar 

Lagendijk M, Vos EL, Ramlakhan KP, Verhoef C, Koning AHJ, van Lankeren W, et al. Breast and tumour volume measurements in breast Cancer patients using 3-D automated breast volume scanner images. World J Surg. 2018;42(7):2087–93.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Tessler FN, Middleton WD, Grant EG, Hoang JK, Berland LL, Teefey SA, et al. ACR thyroid imaging, reporting and Data System (TI-RADS): White Paper of the ACR TI-RADS Committee. J Am Coll Radiol. 2017;14(5):587–95.

Article  PubMed  Google Scholar 

Frates MC, Benson CB, Charboneau JW, Cibas ES, Clark OH, Coleman BG, et al. Management of thyroid nodules detected at US: Society of Radiologists in Ultrasound consensus conference statement. Radiology. 2005;237(3):794–800.

Article  PubMed  Google Scholar 

Koo TK, Li MY. A Guideline of selecting and reporting Intraclass correlation coefficients for Reliability Research. J Chiropr Med. 2016;15(2):155–63.

Article  PubMed Central  PubMed  Google Scholar 

Anvari A, Halpern EF, Samir AE. Essentials of statistical methods for assessing reliability and agreement in quantitative imaging. Acad Radiol. 2018;25(3):391–6.

Article  PubMed  Google Scholar 

Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res. 1999;8(2):135–60.

Article  CAS  PubMed  Google Scholar 

Chhapola V, Kanwal SK, Brar R. Reporting standards for Bland-Altman agreement analysis in laboratory research: a cross-sectional survey of current practice. Ann Clin Biochem. 2015;52(3):382–6.

Article  PubMed  Google Scholar 

Mantha S, Roizen MF, Fleisher LA, Thisted R, Foss J. Comparing methods of clinical measurement: reporting standards for bland and altman analysis. Anesth Analg. 2000;90(3):593–602.

Article  CAS  PubMed  Google Scholar 

Miyauchi A, Kudo T, Ito Y, Oda H, Yamamoto M, Sasai H, et al. Natural history of papillary thyroid microcarcinoma: kinetic analyses on tumor volume during active surveillance and before presentation. Surgery. 2019;165(1):25–30.

Article  PubMed  Google Scholar 

Comments (0)

No login
gif