Yang X, Wang Y, Byrne R et al (2019) Concepts of artificial intelligence for computer-assisted drug discovery. Chem Rev 119:10520–10594. https://doi.org/10.1021/acs.chemrev.8b00728
Article CAS PubMed Google Scholar
Masand VH, Mahajan DT, Nazeruddin GM et al (2015) Effect of information leakage and method of splitting (rational and random) on external predictive ability and behavior of different statistical parameters of QSAR model. Med Chem Res 24:1241–1264. https://doi.org/10.1007/s00044-014-1193-8
Andrada MF, Vega-Hissi EG, Estrada MR, Garro Martinez JC (2017) Impact assessment of the rational selection of training and test sets on the predictive ability of QSAR models. SAR QSAR Environ Res 28:1011–1023. https://doi.org/10.1080/1062936X.2017.1397056
Article CAS PubMed Google Scholar
Clark DE (2006) What has computer-aided molecular design ever done for drug discovery? Expert Opin Drug Discov 1:103–110. https://doi.org/10.1517/17460441.1.2.103
Article CAS PubMed Google Scholar
International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (2017) Assessment and Control of DNA Reactive (Mutagenic) Impurities in Pharmaceuticals to Limit Potential Carcinogenic Risk
Martin TM, Harten P, Young DM et al (2012) Does Rational selection of training and test sets improve the outcome of QSAR modeling? J Chem Inf Model 52:2570–2578. https://doi.org/10.1021/ci300338w
Article CAS PubMed Google Scholar
Cherkasov A, Muratov EN, Fourches D et al (2014) QSAR modeling: where have you been? Where are you going to? J Med Chem 57:4977–5010. https://doi.org/10.1021/jm4004285
Article CAS PubMed PubMed Central Google Scholar
Muratov EN, Bajorath J, Sheridan RP et al (2020) QSAR without borders. Chem Soc Rev 49:3525–3564. https://doi.org/10.1039/D0CS00098A
Article CAS PubMed PubMed Central Google Scholar
Puzyn T, Mostrag-Szlichtyng A, Gajewicz A et al (2011) Investigating the influence of data splitting on the predictive ability of QSAR/QSPR models. Struct Chem 22:795–804. https://doi.org/10.1007/s11224-011-9757-4
Esbensen KH, Geladi P (2010) Principles of proper validation: use and abuse of re-sampling for validation. J Chemom 24:168–187. https://doi.org/10.1002/cem.1310
Hawkins DM, Basak SC, Mills D (2003) Assessing model fit by cross-validation. J Chem Inf Comput Sci 43:579–586. https://doi.org/10.1021/ci025626i
Article CAS PubMed Google Scholar
Golbraikh A, Tropsha A (2000) Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection. Mol Divers 5:231–243. https://doi.org/10.1023/A:1021372108686
Golbraikh A, Shen M, Xiao Z et al (2003) Rational selection of training and test sets for the development of validated QSAR models. J Comput Aided Mol Des 17:241–253. https://doi.org/10.1023/A:1025386326946
Article CAS PubMed Google Scholar
Wu W, Walczak B, Massart DL et al (1996) Artificial neural networks in classification of NIR spectral data: design of the training set. Chemom Intell Lab Syst 33:35–46. https://doi.org/10.1016/0169-7439(95)00077-1
Kronenberger T, Windshügel B, Wrenger C et al (2018) On the relationship of anthranilic derivatives structure and the FXR (Farnesoid X receptor) agonist activity. J Biomol Struct Dyn 36:4378–4391. https://doi.org/10.1080/07391102.2017.1417161
Article CAS PubMed Google Scholar
Veríssimo GC, Menezes Dutra EF, Teotonio Dias AL et al (2019) HQSAR and random forest-based QSAR models for anti-T. vaginalis activities of nitroimidazoles derivatives. J Mol Graph Model 90:180–191. https://doi.org/10.1016/j.jmgm.2019.04.007
Article CAS PubMed Google Scholar
Gomes RA, Genesi GL, Maltarollo VG, Trossini GHG (2017) Quantitative structure–activity relationships (HQSAR, CoMFA, and CoMSIA) studies for COX-2 selective inhibitors. J Biomol Struct Dyn 35:1436–1445. https://doi.org/10.1080/07391102.2016.1185379
Article CAS PubMed Google Scholar
de Fernandes PO, Martins JPA, de Melo EB et al (2021) Quantitative structure-activity relationship and machine learning studies of 2-thiazolylhydrazone derivatives with anti-Cryptococcus neoformans activity. J Biomol Struct Dyn. https://doi.org/10.1080/073911021935321
Kronenberger T, Asse LR, Wrenger C et al (2017) Studies of Staphylococcus aureus FabI inhibitors: fragment-based approach based on holographic structure–activity relationship analyses. Future Med Chem 9:135–151. https://doi.org/10.4155/fmc-2016-0179
Article CAS PubMed Google Scholar
Ferreira GM, de Magalhães JG, Maltarollo VG et al (2020) QSAR studies on the human sirtuin 2 inhibition by non-covalent 7,5,2-anilinobenzamide derivatives. J Biomol Struct Dyn 38:354–363. https://doi.org/10.1080/07391102.2019.1574603
Article CAS PubMed Google Scholar
Maltarollo VG (2019) Classification of Staphylococcus aureus FabI inhibitors by machine learning techniques. IJQSPR 4:1–14. https://doi.org/10.4018/IJQSPR.2019100101
Primi MC, Maltarollo VG, Magalhães JG et al (2016) Convergent QSAR studies on a series of NK3 receptor antagonists for schizophrenia treatment. J Enzyme Inhib Med Chem 31:283–294. https://doi.org/10.3109/14756366.2015.1021250
Article CAS PubMed Google Scholar
Popova M, Isayev O, Tropsha A (2018) Deep reinforcement learning for de novo drug design. Sci Adv 4:eaap7885. https://doi.org/10.1126/sciadv.aap7885
Article CAS PubMed PubMed Central Google Scholar
Schneider G (2019) Mind and machine in drug design. Nat Mach Intell 1:128–130. https://doi.org/10.1038/s42256-019-0030-7
Dara S, Dhamercherla S, Jadav SS et al (2022) Machine learning in drug discovery: a review. Artif Intell Rev 55:1947–1999. https://doi.org/10.1007/s10462-021-10058-4
Ambure P, Halder AK, González Díaz H, Cordeiro MNDS (2019) QSAR-Co: an open source software for developing robust multitasking or multitarget classification-based QSAR models. J Chem Inf Model 59:2538–2544. https://doi.org/10.1021/acs.jcim.9b00295
Article CAS PubMed Google Scholar
Halder AK, Dias Soeiro Cordeiro MN (2021) QSAR-Co-X: an open source toolkit for multitarget QSAR modelling. J Cheminform 13:29. https://doi.org/10.1186/s13321-021-00508-0
Article CAS PubMed PubMed Central Google Scholar
Veríssimo GC (2021) MASSA Algorithm: Molecular data set sampling for training-test separation
Landrum G (2021) RDkit: 2021_03_3 (Q1 2021) Release
Vos NJ de (2015) KModes categorical clustering library
Python Software Foundation argparse—Parser for command-line options, arguments and sub-commands—Python 3.9.7 documentation. https://docs.python.org/3/library/argparse.html. Accessed 5 Oct 2021
scikit-learn: machine learning in Python—scikit-learn 1.0 documentation. https://scikit-learn.org/stable/index.html. Accessed 5 Oct 2021
sklearn.decomposition.PCA. In: scikit-learn. https://www.scikit-learn/stable/modules/generated/sklearn.decomposition.PCA.html. Accessed 5 Oct 2021
scipy.cluster.hierarchy.linkage—SciPy v1.7.1 Manual. https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html. Accessed 8 Oct 2021
scipy.cluster.hierarchy.maxdists—SciPy v1.8.0 Manual. https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.maxdists.html. Accessed 22 Mar 2022
scipy.cluster.hierarchy.fcluster—SciPy v1.7.1 Manual. https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.fcluster.html. Accessed 8 Oct 2021
scipy.cluster.hierarchy.dendrogram—SciPy v1.7.1 Manual. https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.dendrogram.html. Accessed 8 Oct 2021
sklearn.model_selection.train_test_split. In: scikit-learn. https://www.scikit-learn/stable/modules/generated/sklearn.model_selection.train_test_split.html. Accessed 9 Oct 2021
Sutherland JJ, O’Brien LA, Weaver DF (2004) A Comparison of methods for modeling quantitative structure−activity relationships. J Med Chem 47:5541–5554. https://doi.org/10.1021/jm0497141
Article CAS PubMed Google Scholar
Liu C-J, Yu S-L, Liu Y-P et al (2016) Synthesis, cytotoxic activity evaluation and HQSAR study of novel isosteviol derivatives as potential anticancer agents. Eur J Med Chem 115:26–40. https://doi.org/10.1016/j.ejmech.2016.03.009
Article CAS PubMed Google Scholar
Valadares NF, Castilho MS, Polikarpov I, Garratt RC (2007) 2D QSAR studies on thyroid hormone receptor ligands. Bioorg Med Chem 15:4609–4617. https://doi.org/10.1016/j.bmc.2007.04.015
Article CAS PubMed Google Scholar
Ye M, Dawson MI (2009) Studies of cannabinoid-1 receptor antagonists for the treatment of obesity: hologram QSAR model for biarylpyrazolyl oxadiazole ligands. Bioorg Med Chem Lett 19:3310–3315. https://doi.org/10.1016/j.bmcl.2009.04.072
Article CAS PubMed Google Scholar
Jiao L, Wang Y, Qu L et al (2020) Hologram QSAR study on the critical micelle concentration of Gemini surfactants. Colloids Surf, A 586:124226. https://doi.org/10.1016/j.colsurfa.2019.124226
Dassault Systèmes Biovia Corp (2020) BIOVIA discovery studio visualizer 2021
Hawkins PCD, Skillman AG, Warren GL et al (2010) Conformer generation with OMEGA: algorithm and validation using high quality structures from the protein databank and Cambridge structural database. J Chem Inf Model 50:572–584.
Comments (0)