Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49. https://doi.org/10.3322/caac.21660.
Momenimovahed Z, Salehiniya H. Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer (Dove Med Press). 2019;11:151–64. https://doi.org/10.2147/BCTT.S176070.
Stevens RG, Brainard GC, Blask DE, Lockley SW, Motta ME. Breast cancer and circadian disruption from electric lighting in the modern world. CA Cancer J Clin. 2014;64:207–18. https://doi.org/10.3322/caac.21218.
Straif K, Baan R, Grosse Y, Secretan B, Ghissassi FE, Bouvard V, et al. Carcinogenicity of shift-work, painting, and fire-fighting. Lancet Oncol. 2007;8:1065–6. https://doi.org/10.1016/S1470-2045(07)70373-X.
Ward EM, Germolec D, Kogevinas M, McCormick D, Vermeulen R, Anisimov VN, et al. Carcinogenicity of night shift work. Lancet Oncol. 2019;20:1058–9. https://doi.org/10.1016/S1470-2045(19)30455-3.
Cordina-Duverger E, Menegaux F, Popa A, Rabstein S, Harth V, Pesch B, et al. Night shift work and breast cancer: a pooled analysis of population-based case-control studies with complete work history. Eur J Epidemiol. 2018;33:369–79. https://doi.org/10.1007/s10654-018-0368-x.
Buijs FN, León-Mercado L, Guzmán-Ruiz M, Guerrero-Vargas NN, Romo-Nava F, Buijs RM. The circadian system: a regulatory feedback network of periphery and brain. Physiology (Bethesda). 2016;31:170–81. https://doi.org/10.1152/physiol.00037.2015.
Ostrin LA. Ocular and systemic melatonin and the influence of light exposure. Clin Exp Optom. 2019;102:99–108. https://doi.org/10.1111/cxo.12824.
Goldsmith CS, Bell-Pedersen D. Diverse roles for MAPK signaling in circadian clocks. Adv Genet. 2013;84:1–39. https://doi.org/10.1016/B978-0-12-407703-4.00001-3.
Article CAS PubMed Google Scholar
Reszka E, Przybek M, Muurlink O, Pepłonska B. Circadian gene variants and breast cancer. Cancer Lett. 2017;390:137–45. https://doi.org/10.1016/j.canlet.2017.01.012.
Article CAS PubMed Google Scholar
Rabstein S, Harth V, Justenhoven C, Pesch B, Plöttner S, Heinze E, et al. Polymorphisms in circadian genes, night work and breast cancer: results from the GENICA study. Chronobiol Int. 2014;31:1115–22. https://doi.org/10.3109/07420528.2014.957301.
Article CAS PubMed Google Scholar
Lv Y, Li Y, Li J, Bian C, Qin C, Shi Q. A comparative genomics study on the molecular evolution of serotonin/melatonin biosynthesizing enzymes in vertebrates. Front Mol Biosci. 2020;7:11. https://doi.org/10.3389/fmolb.2020.00011.
Article CAS PubMed PubMed Central Google Scholar
Claustrat B, Leston J. Melatonin: physiological effects in humans. Neurochirurgie. 2015;61:77–84. https://doi.org/10.1016/j.neuchi.2015.03.002.
Article CAS PubMed Google Scholar
Acuña-Castroviejo D, Escames G, Venegas C, Díaz-Casado ME, Lima-Cabello E, López LC, et al. Extrapineal melatonin: sources, regulation, and potential functions. Cell Mol Life Sci. 2014;71:2997–3025. https://doi.org/10.1007/s00018-014-1579-2.
Article CAS PubMed Google Scholar
Lucas RJ, Peirson SN, Berson DM, Brown TM, Cooper HM, Czeisler CA, et al. Measuring and using light in the melanopsin age. Trends Neurosci. 2014;37:1–9. https://doi.org/10.1016/j.tins.2013.10.004.
Article CAS PubMed Google Scholar
Cipolla-Neto J, Amaral FG, Soares JM, Gallo CC, Furtado A, Cavaco JE, et al. The crosstalk between melatonin and sex steroid hormones. Neuroendocrinology. 2022;112:115–29. https://doi.org/10.1159/000516148.
Article CAS PubMed Google Scholar
Hill SM, Belancio VP, Dauchy RT, Xiang S, Brimer S, Mao L, et al. Melatonin: an inhibitor of breast cancer. Endocr Relat Cancer. 2015;22:R183-204. https://doi.org/10.1530/ERC-15-0030.
Article CAS PubMed PubMed Central Google Scholar
Cos S, González A, Martínez-Campa C, Mediavilla MD, Alonso-González C, Sánchez-Barceló EJ. Estrogen-signaling pathway: a link between breast cancer and melatonin oncostatic actions. Cancer Detect Prev. 2006;30:118–28. https://doi.org/10.1016/j.cdp.2006.03.002.
Article CAS PubMed Google Scholar
Michailidou K, Hall P, Gonzalez-Neira A, Ghoussaini M, Dennis J, Milne RL, et al. Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nat Genet. 2013;45:353–61. https://doi.org/10.1038/ng.2563.
Article CAS PubMed PubMed Central Google Scholar
Michailidou K, Lindström S, Dennis J, Beesley J, Hui S, Kar S, et al. Association analysis identifies 65 new breast cancer risk loci. Nature. 2017;551:92–4. https://doi.org/10.1038/nature24284.
Article CAS PubMed PubMed Central Google Scholar
Schwender H, Ickstadt K. Identification of SNP interactions using logic regression. Biostatistics. 2008;9:187–98. https://doi.org/10.1093/biostatistics/kxm024.
Wakefield J. A Bayesian measure of the probability of false discovery in genetic epidemiology studies. Am J Hum Genet. 2007;81:208–27. https://doi.org/10.1086/519024.
Article CAS PubMed PubMed Central Google Scholar
R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2016.
Schwender H. logicFS: Identification of SNP Interactions. 2013. https://bioconductor.org/packages/release/bioc/manuals/logicFS/man/logicFS.pdf. Accessed 18 Jan 2023.
Kooperberg C, Ruczinski I. LogicReg: Logic Regression. 2016. https://CRAN.R-project.org/package=LogicReg. Accessed 18 Jan 2023.
Zhang H, Ahearn TU, Lecarpentier J, Barnes D, Beesley J, Qi G, et al. Genome-wide association study identifies 32 novel breast cancer susceptibility loci from overall and subtype-specific analyses. Nat Genet. 2020;52:572–81. https://doi.org/10.1038/s41588-020-0609-2.
Article CAS PubMed PubMed Central Google Scholar
Milne RL, Kuchenbaecker KB, Michailidou K, Beesley J, Kar S, Lindström S, et al. Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer. Nat Genet. 2017;49:1767–78. https://doi.org/10.1038/ng.3785.
Article CAS PubMed PubMed Central Google Scholar
Bose M, Benada J, Thatte JV, Kinalis S, Ejlertsen B, Nielsen FC, et al. A catalog of curated breast cancer genes. Breast Cancer Res Treat. 2022;191:431–41. https://doi.org/10.1007/s10549-021-06441-y.
Article CAS PubMed Google Scholar
Peters EJ, Slager SL, McGrath PJ, Knowles JA, Hamilton SP. Investigation of serotonin-related genes in antidepressant response. Mol Psychiatry. 2004;9:879–89. https://doi.org/10.1038/sj.mp.4001502.
Article CAS PubMed Google Scholar
Preuss N, Salehi B, van der Veen JW, Shen J, Drevets WC, Hodgkinson C, et al. Associations between prefrontal γ-aminobutyric acid concentration and the tryptophan hydroxylase isoform 2 gene, a panic disorder risk allele in women. Int J Neuropsychopharmacol. 2013;16:1707–17. https://doi.org/10.1017/S1461145713000254.
Article CAS PubMed Google Scholar
Walther DJ, Peter J-U, Bashammakh S, Hörtnagl H, Voits M, Fink H, Bader M. Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science. 2003;299:76. https://doi.org/10.1126/science.1078197.
Article CAS PubMed Google Scholar
Zill P, Büttner A, Eisenmenger W, Bondy B, Ackenheil M. Regional mRNA expression of a second tryptophan hydroxylase isoform in postmortem tissue samples of two human brains. Eur Neuropsychopharmacol. 2004;14:282–4. https://doi.org/10.1016/j.euroneuro.2003.10.002.
Article CAS PubMed Google Scholar
Zill P, Büttner A, Eisenmenger W, Müller J, Möller H-J, Bondy B. Predominant expression of tryptophan hydroxylase 1 mRNA in the pituitary: a postmortem study in human brain. Neuroscience. 2009;159:1274–82. https://doi.org/10.1016/j.neuroscience.2009.01.006.
Article CAS PubMed Google Scholar
Chen G-L, Miller GM. Advances in tryptophan hydroxylase-2 gene expression regulation: new insights into serotonin-stress interaction and clinical implications. Am J Med Genet B Neuropsychiatr Genet. 2012;159B:152–71. https://doi.org/10.1002/ajmg.b.32023.
Article CAS PubMed PubMed Central Google Scholar
Nagy AD, Iwamoto A, Kawai M, Goda R, Matsuo H, Otsuka T, et al. Melatonin adjusts the expression pattern of clock genes in the suprachiasmatic nucleus and induces antidepressant-like effect in a mouse model of seasonal affective disorder. Chronobiol Int. 2015;32:447–57. https://doi.org/10.3109/07420528.2014.992525.
Comments (0)