Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell. 2005;120(4):483–95. https://doi.org/10.1016/j.cell.2005.02.001.
Article PubMed CAS Google Scholar
Zullo A, Guida R, Sciarrillo R, Mancini FP. Redox homeostasis in cardiovascular disease: the role of mitochondrial sirtuins. Front Endocrinol (Lausanne). 2022;13:858330. https://doi.org/10.3389/fendo.2022.858330.
Article PubMed PubMed Central Google Scholar
Nathan C, Cunningham-Bussel A. Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat Rev Immunol. 2013;13(5):349–61. https://doi.org/10.1038/nri3423.
Article PubMed PubMed Central CAS Google Scholar
Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol. 2014;24(10):R453–62. https://doi.org/10.1016/j.cub.2014.03.034.
Article PubMed PubMed Central CAS Google Scholar
Sha Y, Marshall HE. S-nitrosylation in the regulation of gene transcription. Biochim Biophys Acta. 2012;1820(6):701–11. https://doi.org/10.1016/j.bbagen.2011.05.008.
Article PubMed CAS Google Scholar
Pérez de la Lastra JM, Juan CA, Plou FJ, Pérez-Lebeña E. The Nitration of proteins, lipids and DNA by peroxynitrite derivatives-chemistry involved and biological relevance. Stresses. 2022;2(1):53–64.
Atashi F, Modarressi A, Pepper MS. The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: a review. Stem Cells and Development. 2015;24(10):1150–63. https://doi.org/10.1089/scd.2014.0484.
Article PubMed PubMed Central CAS Google Scholar
Riegger J, Palm HG, Brenner RE. The functional role of chondrogenic stem/progenito R cells: novel evidence for immunomodulatory properties and regenerative potential after cartilage injury. Eur Cell Mater. 2018;36:110–27. https://doi.org/10.22203/eCM.v036a09.
Article PubMed CAS Google Scholar
Schoppa AM, Chen X, Ramge JM, Vikman A, Fischer V, Haffner-Luntzer M, et al. Osteoblast lineage Sod2 deficiency leads to an osteoporosis-like phenotype in mice. Dis Model Mech. 2022. https://doi.org/10.1242/dmm.049392.
Article PubMed PubMed Central Google Scholar
Fiedor J, Burda K. Potential role of carotenoids as antioxidants in human health and disease. Nutrients. 2014;6(2):466–88. https://doi.org/10.3390/nu6020466.
Article PubMed PubMed Central CAS Google Scholar
Zahan OM, Serban O, Gherman C, Fodor D. The evaluation of oxidative stress in osteoarthritis. Med Pharm Rep. 2020;93(1):12–22. https://doi.org/10.15386/mpr-1422.
Article PubMed PubMed Central Google Scholar
Wang Y, Branicky R, Noe A, Hekimi S. Superoxide dismutases: dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol. 2018;217(6):1915–28. https://doi.org/10.1083/jcb.201708007.
Article PubMed PubMed Central CAS Google Scholar
Fridovich I. Superoxide anion radical (O2-), superoxide dismutases, and related matters. J Biol Chem. 1997;272(30):18515–7. https://doi.org/10.1074/jbc.272.30.18515.
Article PubMed CAS Google Scholar
Bombicino SS, Iglesias DE, Rukavina-Mikusic IA, Buchholz B, Gelpi RJ, Boveris A, et al. Hydrogen peroxide, nitric oxide and ATP are molecules involved in cardiac mitochondrial biogenesis in Diabetes. Free Radical Biol Med. 2017;112:267–76. https://doi.org/10.1016/j.freeradbiomed.2017.07.027.
Palma FR, He CX, Danes JM, Paviani V, Coelho DR, Gantner BN, et al. Mitochondrial superoxide dismutase: what the established, the intriguing, and the novel reveal about a key cellular redox switch. Antioxid Redox Sign. 2020;32(10):701–14. https://doi.org/10.1089/ars.2019.7962.
Velarde MC, Flynn JM, Day NU, Melov S, Campisi J. Mitochondrial oxidative stress caused by Sod2 deficiency promotes cellular senescence and aging phenotypes in the skin. Aging-Us. 2012;4(1):3–12. https://doi.org/10.18632/aging.100423.
Li YB, Huang TT, Carlson EJ, Melov S, Ursell PC, Olson TL, et al. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide-dismutase. Nat Genet. 1995;11(4):376–81. https://doi.org/10.1038/ng1295-376.
Article PubMed CAS Google Scholar
Lebovitz RM, Zhang H, Vogel H, Cartwright J Jr, Dionne L, Lu N, et al. Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proc Natl Acad Sci U S A. 1996;93(18):9782–7. https://doi.org/10.1073/pnas.93.18.9782.
Article PubMed PubMed Central CAS Google Scholar
Izuo N, Nojiri H, Uchiyama S, Noda Y, Kawakami S, Kojima S, et al. Brain-specific superoxide dismutase 2 deficiency causes perinatal death with spongiform encephalopathy in mice. Oxid Med Cell Longev. 2015. https://doi.org/10.1155/2015/238914.
Article PubMed PubMed Central Google Scholar
Townsend DM, Tew KD, Tapiero H. The importance of glutathione in human disease. Biomed Pharmacother. 2003;57(3–4):145–55. https://doi.org/10.1016/S0753-3322(03)00043-X.
Article PubMed PubMed Central CAS Google Scholar
Li Q, Cheng JC, Jiang Q, Lee WY. Role of sirtuins in bone biology: potential implications for novel therapeutic strategies for osteoporosis. Aging Cell. 2021;20(2):e13301. https://doi.org/10.1111/acel.13301.
Article PubMed PubMed Central CAS Google Scholar
Sun KB, Wu YA, Zeng Y, Xu JW, Wu LM, Li MY, et al. The role of the sirtuin family in cartilage and osteoarthritis: molecular mechanisms and therapeutic targets. Arthritis Res Ther. 2022. https://doi.org/10.1186/s13075-022-02983-8.
Article PubMed PubMed Central Google Scholar
Wang CZ, Yang Y, Zhang YQ, Liu JY, Yao ZJ, Zhang C. Protective effects of metformin against osteoarthritis through upregulation of SIRT3-mediated PINK1/Parkin-dependent mitophagy- in primary chondrocytes. Biosci Trends. 2018;12(6):605–12. https://doi.org/10.5582/bst.2018.01263.
Article PubMed CAS Google Scholar
Takayama K, Ishida K, Matsushita T, Fujita N, Hayashi S, Sasaki K, et al. SIRT1 regulation of apoptosis of human chondrocytes. Arthritis Rheum. 2009;60(9):2731–40. https://doi.org/10.1002/art.24864.
Article PubMed CAS Google Scholar
Ma ZX, Xu H, Xiang W, Qi J, Xu YY, Zhao ZG. Deacetylation of FOXO4 by Sirt1 stabilizes chondrocyte extracellular matrix upon activating SOX9. Eur Rev Med Pharmaco. 2021;25(2):626–35. https://doi.org/10.26355/eurrev_202101_24621.
Dai Y, Liu S, Li J, Li J, Lan Y, Nie H, et al. SIRT4 suppresses the inflammatory response and oxidative stress in osteoarthritis. Am J Transl Res. 2020;12(5):1965–75.
PubMed PubMed Central CAS Google Scholar
Nagai K, Matsushita T, Matsuzaki T, Takayama K, Matsumoto T, Kuroda R, et al. Depletion of SIRT6 causes cellular senescence, DNA damage, and telomere dysfunction in human chondrocytes. Osteoarthr Cartilage. 2015;23(8):1412–20. https://doi.org/10.1016/j.joca.2015.03.024.
Gu X, Wang Z, Gao J, Han D, Zhang L, Chen P, et al. SIRT1 suppresses p53-dependent apoptosis by modulation of p21 in osteoblast-like MC3T3-E1 cells exposed to fluoride. Toxicol In Vitro. 2019;57:28–38. https://doi.org/10.1016/j.tiv.2019.02.006.
Article PubMed CAS Google Scholar
Zainabadi K, Liu CJ, Caldwell ALM, Guarente L. SIRT1 is a positive regulator of in vivo bone mass and a therapeutic target for osteoporosis. PLoS ONE. 2017;12(9):e0185236. https://doi.org/10.1371/journal.pone.0185236.
Article PubMed PubMed Central CAS Google Scholar
Wang FS, Kuo CW, Ko JY, Chen YS, Wang SY, Ke HJ, et al. Irisin mitigates oxidative stress, chondrocyte dysfunction and osteoarthritis development through regulating mitochondrial integrity and autophagy. Antioxidants (Basel). 2020. https://doi.org/10.3390/antiox9090810.
Article PubMed PubMed Central Google Scholar
Yang XH, Jiang TL, Wang Y, Guo L. The role and mechanism of SIRT1 in resveratrol-regulated osteoblast autophagy in osteoporosis rats. Sci Rep-Uk. 2019. https://doi.org/10.1038/s41598-019-44766-3.
Guo Y, Jia X, Cui Y, Song Y, Wang S, Geng Y, et al. Sirt3-mediated mitophagy regulates AGEs-induced BMSCs senescence and senile osteoporosis. Redox Biol. 2021;41:101915. https://doi.org/10.1016/j.redox.2021.101915.
Article PubMed PubMed Central CAS Google Scholar
Ahn BH, Kim HS, Song SW, Lee IH, Liu J, Vassilopoulos A, et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci USA. 2008;105(38):14447–52. https://doi.org/10.1073/pnas.0803790105.
Comments (0)