Chemical composition of roots of transgenic pineapple plants

Ali I, Joyia FA, Mustafa G, Mirza SA, Khan MS (2022) Emerging trends to improve tropical plants: biotechnological interventions. In: Khan MS (ed) Tropical plant species and technological interventions for improvement. University of Agriculture Faisalabad, pp 284

Alvarez D, Cerda-Bennasser P, Stowe E, Ramirez-Torres F, Capell T, Dhingra A, Christou P (2021) Fruit crops in the era of genome editing: closing the regulatory gap. Plant Cell Rep 40:915–930

Article  CAS  PubMed  Google Scholar 

Amores-Monge V, Goyanes S, Ribba L, Lopretti M, Sandoval-Barrantes M, Camacho M, Corrales-Ureña Y, Vega-Baudrit JR (2022) Pineapple agro-industrial biomass to produce biomedical applications in a circular economy context in Costa Rica. Polymers 14:4864

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bansod SP, Parikh JK, Sarangi PK (2023) Pineapple peel waste valorization for extraction of bio-active compounds and protein: microwave assisted method and Box Behnken design optimization. Environ Res 221:115237

Article  CAS  PubMed  Google Scholar 

Bayer (2005) Technical information Bayer CropScience, Monheim, Germany

Carsono N, Desiana N, Nurrizqi FM, Elfakhriano IF, Anas A, Sari S, Kusumiyati K, Ohsawa R, Shimono A, Ezura H (2022) Evaluation of agronomic and fruit quality traits of miraculin transgenic tomato: agronomic and fruit quality traits of miraculin transgenic tomato. Biodiv J Biol Div 23. https://doi.org/10.13057/biodiv/d230435

Chouhan R, Ahmed S, Gandhi SG (2023) Over-expression of PR proteins with chitinase activity in transgenic plants for alleviation of fungal pathogenesis. J Plant Pathol 105:69–81

Article  Google Scholar 

d´Eeckenbrugge GC, Leal F (2003) Morphology, anatomy and taxonomy. In: Bartholomew DP, Paull RE, Rohrbach KG (eds) The pineapple: botany, production and uses. CAB International, Honolulu, pp 13–32

Chapter  Google Scholar 

Durechova D, Jopcik M, Rajninec M, Moravcikova J, Libantova J (2019) Expression of Drosera rotundifolia chitinase in transgenic tobacco plants enhanced their antifungal potential. Mol Biotechnol 61:916–928

Article  CAS  PubMed  Google Scholar 

Espinosa P, Lorenzo JC, Iglesias A, Yabor L, Menéndez E, Borroto J, Hernández L, Arencibia A (2002) Production of pineapple transgenic plants assisted by temporary immersion bioreactors. Plant Cell Rep 21:136–140

Article  CAS  Google Scholar 

Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Rad Biol Med 11:81–128

Article  CAS  PubMed  Google Scholar 

Fan L, Ding J, Ma X, Li Y (2019) Ecological biomass allocation strategies in plant species with different life forms in a cold desert. China. Journal of Arid Land 11(5):729–739

Article  Google Scholar 

Fazeli-Nasab B, Piri R, Rahmani AF (2022) Assessment of the role of rhizosphere in soil and its relationship with microorganisms and element absorption. In: Ravindra S, Deep Chandra S, Reeta G (eds) Plant Protection: From Chemicals to Biologicals. Walter de Gruyter GmbH & Co, Berlin/Boston, pp 225–252

Firoozbady E, Young TR (2015) Pineapple plant named ‘Rosé’; U.S. Patent Application No. 13/507,101. Google Patents

González-Moro MB, González-Moro I, De la Peña M, Estavillo JM, Aparicio-Tejo PM, Marino D, González-Murua C, Vega-Mas I (2021) A multi-species analysis defines anaplerotic enzymes and amides as metabolic markers for ammonium nutrition. Front Plant Sci 11:632285

Article  PubMed  PubMed Central  Google Scholar 

Goswami G, Bora SS, Das J, Sarmah T, Barooah M (2022) The chemical dialogue during plant–microbe interaction: implications in sustainable agriculture. Plant-Microbe Interactions. CRC Press, pp 29–40

ISAAA (2019) Global status of commercialized biotech/GM crops. ISAAA Brief, Ithaca, NY

Jain A, Chakraborty J, Das S (2020) Underlying mechanism of plant–microbe crosstalk in shaping microbial ecology of the rhizosphere. Acta Physiol Plant 42:1–13

Article  Google Scholar 

Johnson B (2002) Analysis of US EPA Method 8270D–semivolatile organic compounds by GC/MS. (Environmental: Advertising Supplement). LC-GC North America 20:S18–S18

Google Scholar 

Kamoun S (2001) Non-host resistance to Phytophthora: novel prospects for a classical problem. Plant Biol 4:295–300

CAS  Google Scholar 

Khan N, Ali S, Shahid MA, Mustafa A, Sayyed R, Curá JA (2021) Insights into the interactions among roots, rhizosphere, and rhizobacteria for improving plant growth and tolerance to abiotic stresses: a review. Cells 10:1551

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kinley R, Dhimal CM, Rai GS (2022) Morphological and physico-chemical characteristics of three local pineapple [Ananas comosus (L.) Merr.] cultivars grown under subtropical region of Bhutan. J Hort Postharv Res 5:141–154

Google Scholar 

Leal F, d’Eckenbrugge GC (2018) History, distribution and world production. In: Sanewski G, Bartholomew DP, Paull RE (eds) The pineapple: botany production and uses. CAB International, Wallingford, Boston, pp 1–10

Google Scholar 

Liang X, Qian R, Wang D, Liu L, Sun C, Lin X (2022) Lipid-derived aldehydes: new key mediators of plant growth and stress responses. Biology 11:1590

Article  CAS  PubMed  PubMed Central  Google Scholar 

Linstrom PJ, Mallard WG (2017) NIST Chemistry WebBook, NIST Standard Reference Database Number 69. http://webbook.nist.gov/. Accessed 6 Jan 2017

Lorenzo JC, Yabor L, Medina N, Quintana N, Wells V (2015) Coefficient of variation can identify the most important effects of experimental treatments. Not Bot Horti Agrobo Cluj-Nap 43:287–291

Article  Google Scholar 

Majláth I, Éva C, Tajti J, Khalil R, Elsayed N, Darko E, Szalai G, Janda T (2020) Exogenous methylglyoxal enhances the reactive aldehyde detoxification capability and frost-hardiness of wheat. Plant Physiol Biochem 149:75–85

Article  PubMed  Google Scholar 

Mawlong I, Sujith Kumar M, Singh D (2016) Furan fatty acids: their role in plant systems. Phytochem Rev 15:121–127

Article  CAS  Google Scholar 

Muccilli V, Vitale A, Sheng L, Gentile A, Cardullo N, Tringali C, Oliveri C, La Rosa R, Di Guardo M, La Malfa S (2020) Substantial equivalence of a transgenic lemon fruit showing postharvest fungal pathogens resistance. J Agric Food Chem 68:3806–3816

Article  CAS  PubMed  Google Scholar 

Oburger E, Jones DL (2018) Sampling root exudates–mission impossible? Rhizosphere 6:116–133

Article  Google Scholar 

Parveen S, Khan A, Jahan N, Aaliya K, Muzaffar A, Tabassum B, Inayatullah S, Moeezullah S, Tariq M, Rehmat Z (2023) Expression of chitinase and shRNA gene exhibits resistance to fungi and virus. Genes 14:1090

Article  CAS  PubMed  PubMed Central  Google Scholar 

Py C, Lacoeuilhe JJ, Teisson C (1987) The pineapple: cultivation and uses Maisonneuve & Larose, Paris

Tkacz A, Poole P (2021) The plant microbiome: the dark and dirty secrets of plant growth. Plants Peop Plan 3:124–129

Article  Google Scholar 

Vaghela B, Vashi R, Rajput K, Joshi R (2022) Plant chitinases and their role in plant defense: a comprehensive review. Enz Microb Technol 159:110055

Article  CAS  Google Scholar 

Vincenti S, Mariani M, Alberti J-C, Jacopini S, Brunini-Bronzini de Caraffa V, Berti L, Maury J (2019) Biocatalytic synthesis of natural green leaf volatiles using the lipoxygenase metabolic pathway. Catalysts 9:873

Article  CAS  Google Scholar 

Vives-Peris V, de Ollas C, Gómez-Cadenas A, Pérez-Clemente RM (2020) Root exudates: from plant to rhizosphere and beyond. Plant Cell Rep 39:3–17

Article  CAS  PubMed  Google Scholar 

Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132:44–51

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weber H, Chételat A, Reymond P, Farmer EE (2004) Selective and powerful stress gene expression in Arabidopsis in response to malondialdehyde. The Plant J 37:877–888

Article  CAS  PubMed  Google Scholar 

Yabor L, Aragón C, Hernández M, Arencibia A, Lorenzo JC (2008) Biochemical side effects of the herbicide FINALE on bar gene-containing transgenic pineapple plantlets. Euphytica 164:515–520

Article  CAS  Google Scholar 

Yabor L, Arzola M, Aragón C, Hernández M, Arencibia A, Lorenzo JC (2006) Biochemical side effects of genetic transformation of pineapple. Plant Cell Tiss Org Cult 86:63–67

Article  CAS  Google Scholar 

Yabor L, Gómez D, Pérez L, Martínez J, Escalante D, Garro G, Hajari E, Sershen LJC (2020a) Pineapple fruits from transgenic plants have limited differences on mesocarp biochemical component contents. Acta Physiol Plant 43:1–9

Google Scholar 

Yabor L, Pérez L, Gómez D, Villalobos – Olivera A, Mendoza JR, Martínez J, Escalante D, Garro G, Hajari E, Lorenzo JC (2020b) Histological evaluation of pineapple transgenic plants following eight years of field growth. Euphytica. https://doi.org/10.1007/s10681-020-2555-6216:1-8

Yabor L, Rumlow A, Gómez D, Tebbe CC, Papenbrock J, Lorenzo JC (2017) Mineral composition of a transgenic pineapple clone grown in the field for 8 yr. In Vitro Cell Dev Biol - Plant 53:489–493

Article  CAS  Google Scholar 

Yabor L, Valle B, Carvajal C, Aragón C, Hernández M, González J, Daquinta M, Arencibia A, Lorenzo JC (2010) Characterization of a field-grown transgenic pineapple clone containing the genes chitinase, AP24, and bar. In Vitro Cell Dev Biol - Plant 46:1–7

Article  CAS  Google Scholar 

Yabor L, Valle B, Rodríguez RC, Aragón C, Papenbrock J, Tebbe CC, Lorenzo JC (2016) The third vegetative generation of a field-grown transgenic pineapple clone shows minor side effects of transformation on plant physiological parameters. Plant Cell Tiss Org Cult 125:303–308

Article  CAS  Google Scholar 

Yalcinkaya T, Uzilday B, Ozgur R, Turkan I, Ji M (2019) Lipid peroxidation-derived reactive carbonyl species (RCS): their interaction with ROS and cellular redox during environmental stresses. Environ Exp Bot 165:139–149

Article  CAS  Google Scholar 

Yanes-Paz E, González J, Sánchez R (2000) A technology of acclimatization of pineapple in vitro plants. Pineap News 7:24

Google Scholar 

Yin L, Ji M, Tanaka K, Wang S, Zhang M, Deng X, Zhang S (2017) High level of reduced glutathione contributes to detoxification of lipid peroxide-derived reactive carbonyl species in transgenic Arabidopsis overexpressing glutathione reductase under aluminum stress. Physiol Plant 161:211–223

Article  CAS  PubMed  Google Scholar 

Yin L, Ji M, Wang S, Tsuji W, Tanaka K (2010) The involvement of lipid peroxide-derived aldehydes in aluminum toxicity of tobacco roots. Plant Physiol 152:1406–1417

Article  CAS  PubMed  Google Scholar 

Zhang X, Dippold MA, Kuzyakov Y, Razavi BS (2019) Spatial pattern of enzyme activities depends on root exudate composition. Soil Biol Biochem 133:83–93

Comments (0)

No login
gif