Wu J, Yunus M, Ali M, Escamilla V, Emch M. Influences of heatwave, rainfall, and tree cover on cholera in Bangladesh. Environ Int. 2018;120:304–11. https://doi.org/10.1016/j.envint.2018.08.012.
Article PubMed PubMed Central Google Scholar
Emch M, Feldacker C, Yunus M, Streatfield PK, DinhThiem V, Canh DG, et al. Local environmental predictors of cholera in Bangladesh and Vietnam. Am J Trop Med Hyg. 2008;78:823–32. https://doi.org/10.4269/ajtmh.2008.78.823.
Ruiz-Moreno D, Pascual M, Bouma M, Dobson A, Cash BA. Cholera Seasonality in Madras (1901–1940): dual role for Rainfall in endemic and epidemic regions. EcoHealth. 2007;4:52–62. https://doi.org/10.1007/s10393-006-0079-8.
Akanda AS, Jutla AS, Islam MS. Dual peak cholera transmission in Bengal Delta: a hydroclimatological explanation. Geophys Res Lett. 2009;36:L19401. https://doi.org/10.1029/2009GL039312.
Rodo X, Pascual M, Fuchs G, Faruque ASG. ENSO and cholera: a nonstationary link related to climate change? Proc Natl Acad Sci U S A. 2002;99:12901–6. https://doi.org/10.1073/pnas.182203999.
Article CAS PubMed PubMed Central Google Scholar
Ohtomo K, Kobayashi N, Sumi A, Ohtomo N. Relationship of cholera incidence to El Niño and solar activity elucidated by time-series analysis. Epidemiol Infect. 2010;138:99–107. https://doi.org/10.1017/S0950268809990203.
Article CAS PubMed Google Scholar
Hashizume M, Faruque ASGSG, Terao T, Yunus M, Streatfield K, Yamamoto T, et al. The Indian Ocean Dipole and Cholera Incidence in Bangladesh: a Time-Series Analysis. Environ Health Perspect. 2011;119:239–44. https://doi.org/10.1289/ehp.1002302.
Sarachik E, Cane M. The El Nino-Southern Oscillation Phenomenon. 1st ed. New York: Cambridge University Press; 2010.
Wahiduzzaman M, Luo JJ. A statistical analysis on the contribution of El Niño–Southern Oscillation to the rainfall and temperature over Bangladesh. Meteorol Atmos Phys. 2021;133:55–68. https://doi.org/10.1007/s00703-020-00733-6.
Uddin MJ, Wahiduzzaman M, Abu ·, Islam RMT, Kutub ·, Eibek U, et al. Impacts of climate modes on temperature extremes over Bangladesh using statistical methods. Meteorol Atmos Phys. 2022;134:24. https://doi.org/10.1007/s00703-022-00868-8.
Cash BA, Rodó X, Kinter JL, Yunus M. Disentangling the impact of ENSO and indian ocean variability on the regional climate of Bangladesh: implications for cholera risk. J Clim. 2010;23:2817–31. https://doi.org/10.1175/2009JCLI2512.1.
Chanda A, Das S, Mukhopadhyay A, Ghosh A, Akhand A, Ghosh P, et al. Sea surface temperature and rainfall anomaly over the Bay of Bengal during the El Niño-Southern Oscillation and the extreme Indian Ocean Dipole events between 2002 and 2016. Remote Sens Appl. 2018;12:10–22. https://doi.org/10.1016/J.RSASE.2018.08.001.
Islam MA, Chan A, Ashfold MJ, Ooi CG, Azari M. Effects of El-Niño, Indian Ocean Dipole, and Madden-Julian Oscillation on surface air temperature and rainfall anomalies over Southeast Asia in 2015. Atmos (Basel). 2018;9:1–14. https://doi.org/10.3390/atmos9090352.
Patra P, Dey A. Calcutta’s Pulta Water Works: 150 years of silent service. Eng History Herit. 2019;172:97–109.
Bengal Secretariat Press. Sanitary Commissioner for Bengal Reports and Bengal Public Health Reports. Alipore: 1912.
Government of India. Census of India. 2011 2011. https://censusindia.gov.in/census.website/data/population-finder.
Cazelles B, Chavez M, Berteaux D, Ménard F, Vik JO, Jenouvrier S, et al. Wavelet analysis of ecological time series. Oecologia. 2008;156:287–304. https://doi.org/10.1007/s00442-008-0993-2.
Latinne A, Morand S. Climate anomalies and spillover of Bat-Borne viral Diseases in the Asia–Pacific Region and the Arabian Peninsula. Viruses 2022;14. https://doi.org/10.3390/v14051100.
Santos CAG, Guerra-Gomes IC, Gois BM, Peixoto RF, Keesen TSL, da Silva RM. Correlation of dengue incidence and rainfall occurrence using wavelet transform for João Pessoa city. Sci Total Environ. 2019;647:794–805. https://doi.org/10.1016/j.scitotenv.2018.08.019.
Article CAS PubMed Google Scholar
Ehelepola NDB, Ariyaratne K, Aththanayake AMSMCM, Samarakoon K, Thilakarathna HMA. The correlation between three teleconnections and leptospirosis incidence in the Kandy District, Sri Lanka, 2004–2019. Trop Med Health 2021;49. https://doi.org/10.1186/s41182-021-00325-z.
Mahendran R, Pathirana S, Sashika Piyatilake IT, Nishantha Perera SS, Weerasinghe MC. Assessment of environmental variability on malaria transmission in a malaria-endemic rural dry zone locality of Sri Lanka: the wavelet approach. PLoS ONE. 2020;15. https://doi.org/10.1371/journal.pone.0228540.
Koelle K, Pascual M. Disentangling extrinsic from intrinsic factors in disease dynamics: a nonlinear time series approach with an application to cholera. Am Nat. 2004;163:901–13. https://doi.org/10.1086/420798.
Trenberth KE, Stepaniak DP. Indices of El Niño evolution. J Clim. 2001;14:1697–701. https://doi.org/10.1175/1520-0442(2001)014%1697:LIOENO%2.0.CO;2.
Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP et al. Nino 3.4 SST Index. NOAA 2003;108. https://doi.org/10.1029/2002JD002670.
Gouhier TC, Grinsted A. biwavelet-package: Conduct Univariate and Bivariate Wavelet Analyses 2015:29.
Morlet J, Arens G, Fourgeau E, Giard D. Wave propagation and sampling theory—part I: Complex signal and scattering in multilayered media. Https://DoiOrg/101190/11441328. 2012;47:203–21. https://doi.org/10.1190/1.1441328.
Torrence C, Compo GP. A practical guide to Wavelet Analysis. Bull Am Meteorol Soc. 1998;79:61–78. https://doi.org/10.1175/1520-0477(1998)079%3C0061:APGTWA%3E2.0.CO;2.
Farge M. Wavelet transforms and their applications. Annu Rev Fluid Mech. 1992;24:395–457. https://doi.org/10.5860/choice.39-6472.
Hyndman R, Athanasopulos G, Bergmeir C, Caceres G, Chhay L, O’Hara-Wild M forecast, et al. editors. Forecasting functions for time series and linear models 2023.
Kumar P, Sardana D, Weller E, Bhaskaran PK. Influence of Climate variability on sea level rise and its teleconnection with SST anomalies over the Indo-Pacific Ocean. Int J Climatol. 2022. https://doi.org/10.1002/JOC.7893.
Akhter S, Qiao F, Wu K, Yin X, Chowdhury KMA, Chowdhury NUMK. Seasonal and long-term sea-level variations and their forcing factors in the northern Bay of Bengal: a statistical analysis of temperature, salinity, wind stress curl, and regional climate index data. Dyn Atmos Oceans. 2021;95:101239. https://doi.org/10.1016/J.DYNATMOCE.2021.101239.
Lobitz B, Beck L, Huq A, Wood B, Fuchs G, Faruque AS, et al. Climate and infectious disease: use of remote sensing for detection of Vibrio cholerae by indirect measurement. Proc Natl Acad Sci U S A. 2000;97:1438–43. https://doi.org/10.1073/pnas.97.4.1438.
Article CAS PubMed PubMed Central Google Scholar
Emch M, Yunus M, Escamilla V, Feldacker C, Ali M. Local population and regional environmental drivers of cholera in Bangladesh. Environ Health. 2010;9:2. https://doi.org/10.1186/1476-069X-9-2.
Article CAS PubMed PubMed Central Google Scholar
Sahu SK, Yoon HJ, Widhiyanuriyawan D. Impact on the chlorophyll concentration in the bay of bengal and arabian sea during Indian Ocean dipole mode. Int J Remote Sens. 2011;32:8195–206. https://doi.org/10.1080/01431161.2010.532830.
Tamplin ML, Gauzens AL, Huq A, Sack DA, Colwell RR. Attachment of Vibrio cholerae serogroup O1 to zooplankton and phytoplankton of Bangladesh waters. Appl Environ Microbiol. 1990;56:1977–80. https://doi.org/10.1128/AEM.01238-07.
Article CAS PubMed PubMed Central Google Scholar
Pascual M, Rodó X, Ellner SP, Colwell RR, Bouma MJ. Cholera Dynamics and El Niño-Southern Oscillation. Science (1979) 2000;289:1766–9. https://doi.org/10.1126/science.289.5485.1766.
Shackleton D, Economou T, Memon F, Dutta S, Chen A, Kanungo S. Seasonality of Cholera in Kolkata and in the influence of climate. BMC Infect Dis; 2023.
Shackleton D, Memon FA, Nichols G, Phalkey R, Chen AS. Mechanisms of cholera transmission via environment in India and Bangladesh: state of the science review. Rev Environ Health. 2023. https://doi.org/10.1515/reveh-2022-0201.
Singleton FL, Attwell R, Jangi S, Colwell RR. Effects of temperature and salinity on Vibrio cholerae growth. Appl Environ Microbiol. 1982;44:1047–58.
Article CAS PubMed PubMed Central Google Scholar
Huq A, West PA, Small EB, Huq I, Colwell RRR. Influence of water temperature, salinity, and pH on survival and growth of toxigenic Vibrio cholerae serovar O1 associated with live copepods in laboratory microcosms. Appl Environ Microbiol. 1984;48:420–4. https://doi.org/10.1128/aem.48.2.420-424.1984.
Article CAS PubMed PubMed Central Google Scholar
Joff H, Rossetto T, Adams J. Perceptions of climate variability and coping strategies in Informal settlements in Dhaka, Bangladesh. Cities at Risk; 2013.
Masood M, Yeh J-F, Hanasaki P, Takeuchi N. Model study of the impacts of future climate change on the hydrology of Ganges-Brahmaputra-Meghna basin. Hydrol Earth Syst Sci. 2015;19:747–70. https://doi.org/10.5194/hess-19-747-2015.
Dasgupta S, Gosain AK, Rao S, Roy S, Sarraf M. A megacity in a changing climate: the case of Kolkata. Clim Change. 2013;116:747–66. https://doi.org/10.1007/s10584-012-0516-3.
Khandu, Awange JL, Kuhn M, Anyah R, Forootan E. Changes and variability of precipitation and temperature in the ganges–Brahmaputra–Meghna River Basin based on global high-resolution reanalyses. Int J Climatol. 2017;37:2141–59. https://doi.org/10.1002/joc.4842.
Akanda AS, Jutla AS, Alam M, De Magny GC, Siddique AK, Sack RB, et al. Hydroclimatic influences on seasonal and spatial cholera transmission cycles: implications for public health intervention in the Bengal Delta. Water Resour Res. 2011;47:1–11. https://doi.org/10.1029/2010WR009914.
Whitehead PG, Barbour E, Futter MN, Sarkar S, Rodda H, Caesar J, et al. Impacts of climate change and socio-economic scenarios on flow and water quality of the ganges, Brahmaputra and Meghna (GBM) river systems: low flow and flood statistics. Environ Sci Process Impacts. 2015;17:1057–69. https://doi.org/10.1039/c4em00619d.
Comments (0)