The changing relationship between Cholera and interannual climate variables in Kolkata over the past century

Wu J, Yunus M, Ali M, Escamilla V, Emch M. Influences of heatwave, rainfall, and tree cover on cholera in Bangladesh. Environ Int. 2018;120:304–11. https://doi.org/10.1016/j.envint.2018.08.012.

Article  PubMed  PubMed Central  Google Scholar 

Emch M, Feldacker C, Yunus M, Streatfield PK, DinhThiem V, Canh DG, et al. Local environmental predictors of cholera in Bangladesh and Vietnam. Am J Trop Med Hyg. 2008;78:823–32. https://doi.org/10.4269/ajtmh.2008.78.823.

Article  PubMed  Google Scholar 

Ruiz-Moreno D, Pascual M, Bouma M, Dobson A, Cash BA. Cholera Seasonality in Madras (1901–1940): dual role for Rainfall in endemic and epidemic regions. EcoHealth. 2007;4:52–62. https://doi.org/10.1007/s10393-006-0079-8.

Article  Google Scholar 

Akanda AS, Jutla AS, Islam MS. Dual peak cholera transmission in Bengal Delta: a hydroclimatological explanation. Geophys Res Lett. 2009;36:L19401. https://doi.org/10.1029/2009GL039312.

Article  Google Scholar 

Rodo X, Pascual M, Fuchs G, Faruque ASG. ENSO and cholera: a nonstationary link related to climate change? Proc Natl Acad Sci U S A. 2002;99:12901–6. https://doi.org/10.1073/pnas.182203999.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ohtomo K, Kobayashi N, Sumi A, Ohtomo N. Relationship of cholera incidence to El Niño and solar activity elucidated by time-series analysis. Epidemiol Infect. 2010;138:99–107. https://doi.org/10.1017/S0950268809990203.

Article  CAS  PubMed  Google Scholar 

Hashizume M, Faruque ASGSG, Terao T, Yunus M, Streatfield K, Yamamoto T, et al. The Indian Ocean Dipole and Cholera Incidence in Bangladesh: a Time-Series Analysis. Environ Health Perspect. 2011;119:239–44. https://doi.org/10.1289/ehp.1002302.

Article  PubMed  Google Scholar 

Sarachik E, Cane M. The El Nino-Southern Oscillation Phenomenon. 1st ed. New York: Cambridge University Press; 2010.

Book  Google Scholar 

Wahiduzzaman M, Luo JJ. A statistical analysis on the contribution of El Niño–Southern Oscillation to the rainfall and temperature over Bangladesh. Meteorol Atmos Phys. 2021;133:55–68. https://doi.org/10.1007/s00703-020-00733-6.

Article  Google Scholar 

Uddin MJ, Wahiduzzaman M, Abu ·, Islam RMT, Kutub ·, Eibek U, et al. Impacts of climate modes on temperature extremes over Bangladesh using statistical methods. Meteorol Atmos Phys. 2022;134:24. https://doi.org/10.1007/s00703-022-00868-8.

Article  Google Scholar 

Cash BA, Rodó X, Kinter JL, Yunus M. Disentangling the impact of ENSO and indian ocean variability on the regional climate of Bangladesh: implications for cholera risk. J Clim. 2010;23:2817–31. https://doi.org/10.1175/2009JCLI2512.1.

Article  Google Scholar 

Chanda A, Das S, Mukhopadhyay A, Ghosh A, Akhand A, Ghosh P, et al. Sea surface temperature and rainfall anomaly over the Bay of Bengal during the El Niño-Southern Oscillation and the extreme Indian Ocean Dipole events between 2002 and 2016. Remote Sens Appl. 2018;12:10–22. https://doi.org/10.1016/J.RSASE.2018.08.001.

Article  Google Scholar 

Islam MA, Chan A, Ashfold MJ, Ooi CG, Azari M. Effects of El-Niño, Indian Ocean Dipole, and Madden-Julian Oscillation on surface air temperature and rainfall anomalies over Southeast Asia in 2015. Atmos (Basel). 2018;9:1–14. https://doi.org/10.3390/atmos9090352.

Article  CAS  Google Scholar 

Patra P, Dey A. Calcutta’s Pulta Water Works: 150 years of silent service. Eng History Herit. 2019;172:97–109.

Google Scholar 

Bengal Secretariat Press. Sanitary Commissioner for Bengal Reports and Bengal Public Health Reports. Alipore: 1912.

Government of India. Census of India. 2011 2011. https://censusindia.gov.in/census.website/data/population-finder.

Cazelles B, Chavez M, Berteaux D, Ménard F, Vik JO, Jenouvrier S, et al. Wavelet analysis of ecological time series. Oecologia. 2008;156:287–304. https://doi.org/10.1007/s00442-008-0993-2.

Article  PubMed  Google Scholar 

Latinne A, Morand S. Climate anomalies and spillover of Bat-Borne viral Diseases in the Asia–Pacific Region and the Arabian Peninsula. Viruses 2022;14. https://doi.org/10.3390/v14051100.

Santos CAG, Guerra-Gomes IC, Gois BM, Peixoto RF, Keesen TSL, da Silva RM. Correlation of dengue incidence and rainfall occurrence using wavelet transform for João Pessoa city. Sci Total Environ. 2019;647:794–805. https://doi.org/10.1016/j.scitotenv.2018.08.019.

Article  CAS  PubMed  Google Scholar 

Ehelepola NDB, Ariyaratne K, Aththanayake AMSMCM, Samarakoon K, Thilakarathna HMA. The correlation between three teleconnections and leptospirosis incidence in the Kandy District, Sri Lanka, 2004–2019. Trop Med Health 2021;49. https://doi.org/10.1186/s41182-021-00325-z.

Mahendran R, Pathirana S, Sashika Piyatilake IT, Nishantha Perera SS, Weerasinghe MC. Assessment of environmental variability on malaria transmission in a malaria-endemic rural dry zone locality of Sri Lanka: the wavelet approach. PLoS ONE. 2020;15. https://doi.org/10.1371/journal.pone.0228540.

Koelle K, Pascual M. Disentangling extrinsic from intrinsic factors in disease dynamics: a nonlinear time series approach with an application to cholera. Am Nat. 2004;163:901–13. https://doi.org/10.1086/420798.

Article  PubMed  Google Scholar 

Trenberth KE, Stepaniak DP. Indices of El Niño evolution. J Clim. 2001;14:1697–701. https://doi.org/10.1175/1520-0442(2001)014%1697:LIOENO%2.0.CO;2.

Article  Google Scholar 

Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP et al. Nino 3.4 SST Index. NOAA 2003;108. https://doi.org/10.1029/2002JD002670.

Gouhier TC, Grinsted A. biwavelet-package: Conduct Univariate and Bivariate Wavelet Analyses 2015:29.

Morlet J, Arens G, Fourgeau E, Giard D. Wave propagation and sampling theory—part I: Complex signal and scattering in multilayered media. Https://DoiOrg/101190/11441328. 2012;47:203–21. https://doi.org/10.1190/1.1441328.

Article  Google Scholar 

Torrence C, Compo GP. A practical guide to Wavelet Analysis. Bull Am Meteorol Soc. 1998;79:61–78. https://doi.org/10.1175/1520-0477(1998)079%3C0061:APGTWA%3E2.0.CO;2.

Article  Google Scholar 

Farge M. Wavelet transforms and their applications. Annu Rev Fluid Mech. 1992;24:395–457. https://doi.org/10.5860/choice.39-6472.

Article  Google Scholar 

Hyndman R, Athanasopulos G, Bergmeir C, Caceres G, Chhay L, O’Hara-Wild M forecast, et al. editors. Forecasting functions for time series and linear models 2023.

Kumar P, Sardana D, Weller E, Bhaskaran PK. Influence of Climate variability on sea level rise and its teleconnection with SST anomalies over the Indo-Pacific Ocean. Int J Climatol. 2022. https://doi.org/10.1002/JOC.7893.

Article  Google Scholar 

Akhter S, Qiao F, Wu K, Yin X, Chowdhury KMA, Chowdhury NUMK. Seasonal and long-term sea-level variations and their forcing factors in the northern Bay of Bengal: a statistical analysis of temperature, salinity, wind stress curl, and regional climate index data. Dyn Atmos Oceans. 2021;95:101239. https://doi.org/10.1016/J.DYNATMOCE.2021.101239.

Article  Google Scholar 

Lobitz B, Beck L, Huq A, Wood B, Fuchs G, Faruque AS, et al. Climate and infectious disease: use of remote sensing for detection of Vibrio cholerae by indirect measurement. Proc Natl Acad Sci U S A. 2000;97:1438–43. https://doi.org/10.1073/pnas.97.4.1438.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Emch M, Yunus M, Escamilla V, Feldacker C, Ali M. Local population and regional environmental drivers of cholera in Bangladesh. Environ Health. 2010;9:2. https://doi.org/10.1186/1476-069X-9-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sahu SK, Yoon HJ, Widhiyanuriyawan D. Impact on the chlorophyll concentration in the bay of bengal and arabian sea during Indian Ocean dipole mode. Int J Remote Sens. 2011;32:8195–206. https://doi.org/10.1080/01431161.2010.532830.

Article  Google Scholar 

Tamplin ML, Gauzens AL, Huq A, Sack DA, Colwell RR. Attachment of Vibrio cholerae serogroup O1 to zooplankton and phytoplankton of Bangladesh waters. Appl Environ Microbiol. 1990;56:1977–80. https://doi.org/10.1128/AEM.01238-07.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pascual M, Rodó X, Ellner SP, Colwell RR, Bouma MJ. Cholera Dynamics and El Niño-Southern Oscillation. Science (1979) 2000;289:1766–9. https://doi.org/10.1126/science.289.5485.1766.

Shackleton D, Economou T, Memon F, Dutta S, Chen A, Kanungo S. Seasonality of Cholera in Kolkata and in the influence of climate. BMC Infect Dis; 2023.

Shackleton D, Memon FA, Nichols G, Phalkey R, Chen AS. Mechanisms of cholera transmission via environment in India and Bangladesh: state of the science review. Rev Environ Health. 2023. https://doi.org/10.1515/reveh-2022-0201.

Article  PubMed  Google Scholar 

Singleton FL, Attwell R, Jangi S, Colwell RR. Effects of temperature and salinity on Vibrio cholerae growth. Appl Environ Microbiol. 1982;44:1047–58.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huq A, West PA, Small EB, Huq I, Colwell RRR. Influence of water temperature, salinity, and pH on survival and growth of toxigenic Vibrio cholerae serovar O1 associated with live copepods in laboratory microcosms. Appl Environ Microbiol. 1984;48:420–4. https://doi.org/10.1128/aem.48.2.420-424.1984.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Joff H, Rossetto T, Adams J. Perceptions of climate variability and coping strategies in Informal settlements in Dhaka, Bangladesh. Cities at Risk; 2013.

Masood M, Yeh J-F, Hanasaki P, Takeuchi N. Model study of the impacts of future climate change on the hydrology of Ganges-Brahmaputra-Meghna basin. Hydrol Earth Syst Sci. 2015;19:747–70. https://doi.org/10.5194/hess-19-747-2015.

Article  Google Scholar 

Dasgupta S, Gosain AK, Rao S, Roy S, Sarraf M. A megacity in a changing climate: the case of Kolkata. Clim Change. 2013;116:747–66. https://doi.org/10.1007/s10584-012-0516-3.

Article  Google Scholar 

Khandu, Awange JL, Kuhn M, Anyah R, Forootan E. Changes and variability of precipitation and temperature in the ganges–Brahmaputra–Meghna River Basin based on global high-resolution reanalyses. Int J Climatol. 2017;37:2141–59. https://doi.org/10.1002/joc.4842.

Article  Google Scholar 

Akanda AS, Jutla AS, Alam M, De Magny GC, Siddique AK, Sack RB, et al. Hydroclimatic influences on seasonal and spatial cholera transmission cycles: implications for public health intervention in the Bengal Delta. Water Resour Res. 2011;47:1–11. https://doi.org/10.1029/2010WR009914.

Article  Google Scholar 

Whitehead PG, Barbour E, Futter MN, Sarkar S, Rodda H, Caesar J, et al. Impacts of climate change and socio-economic scenarios on flow and water quality of the ganges, Brahmaputra and Meghna (GBM) river systems: low flow and flood statistics. Environ Sci Process Impacts. 2015;17:1057–69. https://doi.org/10.1039/c4em00619d.

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif