De La Cruz MSD, Young AP, Ruffin MT. Diagnosis and management of pancreatic cancer. Am Fam Physician. 2014;89(8):626–32.
Ilic M, Ilic I. Epidemiology of pancreatic cancer. World J Gastroenterol. 2016;22(44):9694. https://doi.org/10.3748/wjg.v22.i44.9694.
Article PubMed PubMed Central Google Scholar
Hariharan D, Saied A, Kocher HM. Analysis of mortality rates for pancreatic cancer across the world. HPB. 2008;10(1):58–62. https://doi.org/10.1080/13651820701883148.
Article CAS PubMed PubMed Central Google Scholar
Sun H, Ma H, Hong G, Sun H, Wang J. Survival improvement in patients with pancreatic cancer by decade: a period analysis of the SEER database, 1981–2010. Sci Rep. 2014;4:6747. https://doi.org/10.1038/srep06747.
Article CAS PubMed PubMed Central Google Scholar
Zeng S, Pöttler M, Lan B, Grützmann R, Pilarsky C, Yang H. Chemoresistance in pancreatic cancer. Int J Mol Sci. 2019;20(18):4504. https://doi.org/10.3390/ijms20184504.
Article CAS PubMed PubMed Central Google Scholar
Tan S, Li D, Zhu X. Cancer immunotherapy: pros, cons and beyond. Biomed Pharmacother. 2020;124:109821. https://doi.org/10.1016/j.biopha.2020.109821.
Apte MV, Wilson JS, Lugea A, Pandol SJ. A starring role for stellate cells in the pancreatic cancer microenvironment. Gastroenterology. 2013;144(6):1210–9. https://doi.org/10.1053/j.gastro.2012.11.037.
Charmsaz S, Collins DM, Perry AS, Prencipe M. Novel strategies for cancer treatment: highlights from the 55th IACR Annual Conference. Cancers. 2019;11(8):1125. https://doi.org/10.3390/cancers11081125.
Article CAS PubMed PubMed Central Google Scholar
Whatcott CJ, Posner RG, Von Hoff DD, Han H. Desmoplasia and chemoresistance in pancreatic cancer. In: Grippo PJ, Munshi HG, eds. Pancreatic cancer and tumor microenvironment. Transworld Research Network; 2012. http://www.ncbi.nlm.nih.gov/books/NBK98939/. Accessed 1 Jul 2022.
Wherry EJ. T cell exhaustion. Nat Immunol. 2011;12(6):492–9. https://doi.org/10.1038/ni.2035.
Article CAS PubMed Google Scholar
Saka D, Gökalp M, Piyade B, et al. Mechanisms of T-cell exhaustion in pancreatic cancer. Cancers. 2020;12(8):E2274. https://doi.org/10.3390/cancers12082274.
McGuinness LA, Higgins JPT. Risk-of-bias VISualization (robvis): an R package and Shiny web app for visualizing risk-of-bias assessments. Res Synth Methods. 2021;12(1):55–61. https://doi.org/10.1002/jrsm.1411.
Cibrián D, Sánchez-Madrid F. CD69: from activation marker to metabolic gatekeeper. Eur J Immunol. 2017;47(6):946–53. https://doi.org/10.1002/eji.201646837.
Article CAS PubMed PubMed Central Google Scholar
Bockorny B, Semenisty V, Macarulla T, et al. BL-8040, a CXCR4 antagonist, in combination with pembrolizumab and chemotherapy for pancreatic cancer: the COMBAT trial. Nat Med. 2020;26(6):878–85. https://doi.org/10.1038/s41591-020-0880-x.
Article CAS PubMed Google Scholar
Vonderheide RH, Kraynyak KA, Shields AF, et al. Phase 1 study of safety, tolerability and immunogenicity of the human telomerase (hTERT)-encoded DNA plasmids INO-1400 and INO-1401 with or without IL-12 DNA plasmid INO-9012 in adult patients with solid tumors. J Immunother Cancer. 2021;9(7):e003019. https://doi.org/10.1136/jitc-2021-003019.
Overman M, Javle M, Davis RE, et al. Randomized phase II study of the Bruton tyrosine kinase inhibitor acalabrutinib, alone or with pembrolizumab in patients with advanced pancreatic cancer. J Immunother Cancer. 2020;8(1):e000587. https://doi.org/10.1136/jitc-2020-000587.
Grage-Griebenow E, Jerg E, Gorys A, et al. L1CAM promotes enrichment of immunosuppressive T cells in human pancreatic cancer correlating with malignant progression. Mol Oncol. 2014;8(5):982–97. https://doi.org/10.1016/j.molonc.2014.03.001.
Article CAS PubMed PubMed Central Google Scholar
Seifert AM, Eymer A, Heiduk M, et al. PD-1 expression by lymph node and intratumoral regulatory T cells is associated with lymph node metastasis in pancreatic cancer. Cancers. 2020;12(10):E2756. https://doi.org/10.3390/cancers12102756.
Rea IM, McNerlan SE, Alexander HD. CD69, CD25, and HLA-DR activation antigen expression on CD3+ lymphocytes and relationship to serum TNF-alpha, IFN-gamma, and sIL-2R levels in aging. Exp Gerontol. 1999;34(1):79–93. https://doi.org/10.1016/s0531-5565(98)00058-8.
Article CAS PubMed Google Scholar
Komura T, Sakai Y, Harada K, et al. Inflammatory features of pancreatic cancer highlighted by monocytes/macrophages and CD4+ T cells with clinical impact. Cancer Sci. 2015;106(6):672–86. https://doi.org/10.1111/cas.12663.
Article CAS PubMed PubMed Central Google Scholar
Wang X, Wang L, Mo Q, Dong Y, Wang G, Ji A. Changes of Th17/Treg cell and related cytokines in pancreatic cancer patients. Int J Clin Exp Pathol. 2015;8(5):5702–5708. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4503155/. Accessed 2 Jul 2022.
Expansion of tumor-infiltrating lymphocytes (TIL) from human pancreatic tumors - PubMed. https://pubmed.ncbi.nlm.nih.gov/27777771/. Accessed 2 Jul 2022.
Winkler MS, Rissiek A, Priefler M, et al. Human leucocyte antigen (HLA-DR) gene expression is reduced in sepsis and correlates with impaired TNFα response: a diagnostic tool for immunosuppression? PLoS ONE. 2017;12(8):e0182427. https://doi.org/10.1371/journal.pone.0182427.
Sivakumar S, Abu-Shah E, Ahern DJ, et al. Activated regulatory T-cells, dysfunctional and senescent T-cells hinder the immunity in pancreatic cancer. Cancers. 2021;13(8):1776. https://doi.org/10.3390/cancers13081776.
Article CAS PubMed PubMed Central Google Scholar
Ullenhag GJ, Mozaffari F, Broberg M, Mellstedt H, Liljefors M. Clinical and immune effects of lenalidomide in combination with gemcitabine in patients with advanced pancreatic cancer. PLoS ONE. 2017;12(1):e0169736. https://doi.org/10.1371/journal.pone.0169736.
Wattenberg MM, Herrera VM, Giannone MA, Gladney WL, Carpenter EL, Beatty GL. Systemic inflammation is a determinant of outcomes of CD40 agonist-based therapy in pancreatic cancer patients. JCI Insight. 2021;6(5):145389. https://doi.org/10.1172/jci.insight.145389.
Han Y, Liu D, Li L. PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res. 2020;10(3):727–742. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7136921/. Accessed 2 Jul 2022.
Seo YD, Jiang X, Sullivan KM, et al. Mobilization of CD8+ T cells via CXCR4 blockade facilitates PD-1 checkpoint therapy in human pancreatic cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2019;25(13):3934–45. https://doi.org/10.1158/1078-0432.CCR-19-0081.
Cortese N, Capretti G, Barbagallo M, et al. Metabolome of pancreatic juice delineates distinct clinical profiles of pancreatic cancer and reveals a link between glucose metabolism and PD-1+ cells. Cancer Immunol Res. 2020;8(4):493–505. https://doi.org/10.1158/2326-6066.CIR-19-0403.
Article CAS PubMed Google Scholar
Ding G, Shen T, Yan C, Zhang M, Wu Z, Cao L. IFN-γ down-regulates the PD-1 expression and assist nivolumab in PD-1-blockade effect on CD8+ T-lymphocytes in pancreatic cancer. BMC Cancer. 2019;19(1):1053. https://doi.org/10.1186/s12885-019-6145-8.
Article CAS PubMed PubMed Central Google Scholar
Immune profiling and immunotherapeutic targets in pancreatic cancer - PMC. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7867882/. Accessed 3 Jul 2022.
Zhang M, Yang J, Zhou J, et al. Prognostic values of CD38+CD101+PD1+CD8+ T Cells in Pancreatic Cancer. Immunol Invest. 2019;48(5):466–79. https://doi.org/10.1080/08820139.2019.1566356.
Article CAS PubMed Google Scholar
Bai M, Zheng Y, Liu H, Su B, Zhan Y, He H. CXCR5+ CD8+ T cells potently infiltrate pancreatic tumors and present high functionality. Exp Cell Res. 2017;361(1):39–45. https://doi.org/10.1016/j.yexcr.2017.09.039.
Article CAS PubMed Google Scholar
Frontiers | Restored CD8+PD-1+ T cells facilitate the response to anti-PD-1 for patients with pancreatic ductal adenocarcinoma | Oncology. https://www.frontiersin.org/articles/10.3389/fonc.2022.837560/full. Accessed 3 Jul 2022.
Lau SP, Klaase L, Vink M, et al. Autologous dendritic cells pulsed with allogeneic tumour cell lysate induce tumour-reactive T-cell responses in patients with pancreatic cancer: A phase I study. Eur J Cancer Oxf Engl. 1990;2022(169):20–31. https://doi.org/10.1016/j.ejca.2022.03.015.
Karamitopoulou E, Andreou A, Pahud de Mortanges A, Tinguely M, Gloor B, Perren A. PD-1/PD-L1-associated immunoarchitectural patterns stratify pancreatic cancer patients into prognostic/predictive subgroups. Cancer Immunol Res. 2021;9(12):1439–1450. https://doi.org/10.1158/2326-6066.CIR-21-0144.
Hegde A, Jayaprakash P, Couillault CA, et al. A phase I dose-escalation study to evaluate the safety and tolerability of evofosfamide in combination with ipilimumab in advanced solid malignancies. Clin Cancer Res Off J Am Assoc Cancer Res. 2021;27(11):3050–60. https://doi.org/10.1158/1078-0432.CCR-20-4118.
Shindo Y, Hazama S, Suzuki N, et al. Predictive biomarkers for the efficacy of peptide vaccine treatment: based on the results of a phase II study on advanced pancreatic cancer. J Exp Clin Cancer Res CR. 2017;36:36. https://doi.org/10.1186/s13046-017-0509-1.
Article CAS PubMed Google Scholar
Knudsen ES, Vail P, Balaji U, et al. Stratification of pancreatic ductal adenocarcinoma: combinatorial genetic, stromal, and immunologic markers. Clin Cancer Res Off J Am Assoc Cancer Res. 2017;23(15):4429–40. https://doi.org/10.1158/1078-0432.CCR-17-0162.
Goldberg MV, Drake CG. LAG-3 in cancer immunotherapy. Curr Top Microbiol Immunol. 2011;344:269–78. https://doi.org/10.1007/82_2010_114.
Article CAS PubMed PubMed Central Google Scholar
Hyung J, Lee H, Jin H, et al. Tumor immune-gene expression profiles and peripheral immune phenotypes associated with clinical outcomes of locally advanced pancreatic cancer following FOLFIRINOX. ESMO Open. 2022;7(3):100484. https://doi.org/10.1016/j.esmoop.2022.100484.
O’Neill C, Hayat T, Hamm J, et al. A phase 1b trial of concurrent immunotherapy and irreversible electroporation in the treatment of locally advanced pancreatic adenocarcinoma. Surgery. 2020;168(4):610–6. https://doi.org/10.1016/j.surg.2020.04.057.
Romero JM, Grünwald B, Jang GH, et al. A four-chemokine signature is associated with a T-cell-inflamed phenotype in primary and metastatic pancreatic cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2020;26(8):1997–2010. https://doi.org/10.1158/1078-0432.CCR-19-2803.
Comments (0)