Abel S, Theologis A (1994) Transient transformation of Arabidopsis leaf protoplasts: a versatile experimental system to study gene expression. Plant J 5:421–427
Article CAS PubMed Google Scholar
Adedeji OS, Naing AH, Kim CK (2020) Protoplast isolation and shoot regeneration from protoplast-derived calli of Chrysanthemum cv. White ND. Plant Cell Tissue Organ Cult 141:571–581
Agrios GN (2005) Plant Pathology, 5th edn. Elsevier Academic Press, Amsterdam
Andersson M, Turesson H, Olsson N, Fält A-S, Ohlsson P, Gonzalez MN, Samuelsson M, Hofvander P (2018) Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery. Physiol Plant 164:378–384
Article CAS PubMed Google Scholar
Anzalone AV, Koblan LW, Liu DR (2020) Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat Biotech 38:824–844
Arias RS, Dayan FE, Michel A, Howell JL, Scheffler BE (2006) Characterization of a higher plant herbicide-resistant phytoene desaturase and its use as a selectable marker. Plant Biotechnol J 4:263–273
Article CAS PubMed Google Scholar
Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Report 9:208–218
Bai Y, Pavan S, Zheng Z, Zappel NF, Reinstädler A, Lotti C, De Giovanni C, Ricciardi L, Lindhout P, Visser R, Theres K, Panstruga R (2008) Naturally Occurring Broad-Spectrum Powdery Mildew Resistance in a Central American Tomato Accession Is Caused by Loss of Mlo Function. Mol Plant-Microbe Interact 21:30–39
Article CAS PubMed Google Scholar
Boss WF, Mott RL (1980) Effects of Divalent Cations and Polyethylene Glycol on the Membrane Fluidity of Protoplast. Plant Physiol 66:835–837
Article CAS PubMed PubMed Central Google Scholar
Brewer SE, Chambers AH (2022) CRISPR/Cas9-mediated genome editing of phytoene desaturase in Carica papaya L. J Hortic Sci Biotechnol 97:580–592
Brocklehurst K, Baines B, Kierstan M (1981) Papain and other constituents of Carica papaya L. Top Enzym Ferment Biotechnol 5:262–335
Büschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, Van Daelen R, Van Der Lee T, Diergaarde P, Groenendijk J, Töpsch S, Vos P, Salamini F, Schulze-Lefert P (1997) The Barley Mlo Gene: A Novel Control Element of Plant Pathogen Resistance. Cell 88:695–705
Carlos-Hilario LR, Christopher DA (2015) Improved Agrobacterium-mediated transformation of Carica papaya cultivar ‘Kapoho’ from embryogenic cell suspension cultures. In Vitro Cellular Dev Biol Plant 51:580–587
Carrillo R, Christopher DA (2022) Development of a GFP biosensor reporter for the unfolded protein response-signaling pathway in plants: incorporation of the bZIP60 intron into the GFP gene. Plant Signal Behav 17(1):2098645
Article PubMed PubMed Central Google Scholar
Chen K, Wang Y, Zhang R, Zhang H, Gao C (2019) CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture. Annu Rev Plant Biol 70:667–697
Article CAS PubMed Google Scholar
Chiu W-l, Niwa Y, Zeng W, Hirano T, Kobayashi H, Sheen J (1996) Engineered GFP as a vital reporter in plants. Curr Biol 6:325–330
Article CAS PubMed Google Scholar
Cho EJ, Yuen CYL, Kang B-H, Ondzighi CA, Staehelin LA, Christopher DA (2011) Protein disulfide isomerase-2 of Arabidopsis mediates protein folding and localizes to both the secretory pathway and nucleus, where it interacts with maternal effect embryo arrest factor. Mol Cells 32:459–475
Article CAS PubMed PubMed Central Google Scholar
Cocking EC (1972) Plant Cell Protoplasts-Isolation and Development. Annu Rev Plant Physiol 23:29–50
Cunningham B, Nelson S (2012) Powdery Mildew of Papaya in Hawaii. http://hdl.handle.net/10125/33214
Devoto A, Piffanelli P, Nilsson I, Wallin E, Panstruga R, von Heijne G, Schulze-Lefert P (1999) Topology, subcellular localization, and sequence diversity of the Mlo family in plants. J Biol Chem 274:34993–35004
Article CAS PubMed Google Scholar
Dewitt MA, Corn JE, Carroll D (2017) Genome editing via delivery of Cas9 ribonucleoprotein. Methods 121-122:9–15
Article CAS PubMed PubMed Central Google Scholar
Dudits D, Maroy E, Praznovszky T, Olah Z, Gyorgyey J, Cella R (1987) Transfer of resistance traits from carrot into tobacco by asymmetric somatic hybridization: Regeneration of fertile plants. Proc Natl Acad Sci U S A 84:8434–8438
Article CAS PubMed PubMed Central Google Scholar
El-Mounadi K, Morales-Floriano ML, Garcia-Ruiz H (2020) Principles, applications, and biosafety of plant genome editing using CRISPR-Cas9. Front Plant Sci 11. https://doi.org/10.3389/fpls.2020.00056
Evans DA (1983) Agricultural Applications of Plant Protoplast Fusion. Bio-Technology 1:253–261
Evans EA, Balen FH, Crane JH (2021) An overview of us papaya production, trade, and consumption. University of Florida IFAS Extension Pub. #FE914, pp 1–8
FAOSTAT (2020) Food and Agriculture Organization of the United Nations. https://www.fao.org/faostat/en/#data/QV
González MN, Massa GA, Andersson M, Turesson H, Olsson N, Fält A-S, Storani L, Décima Oneto CA, Hofvander P, Feingold SE (2020) Reduced enzymatic browning in potato tubers by specific editing of a polyphenol oxidase gene via ribonucleoprotein complexes delivery of the CRISPR/Cas9 System. Front Plant Sci 10. https://doi.org/10.3389/fpls.2019.01649
Gumtow R, Wu D, Uchida J, Tian M (2018) A Phytophthora palmivora Extracellular Cystatin-Like Protease Inhibitor Targets Papain to Contribute to Virulence on Papaya. Mol Plant-Microbe Interact 31:363–373
Article CAS PubMed Google Scholar
Hasley JAR, Navet N, Tian M (2021) CRISPR/Cas9-mediated mutagenesis of sweet basil candidate susceptibility gene ObDMR6 enhances downy mildew resistance. PLoS One 16:e0253245
Article CAS PubMed PubMed Central Google Scholar
He Y, Mudgett M, Zhao Y (2022) Advances in gene editing without residual transgenes in plants. Plant Physiol 188:1757–1768
Article CAS PubMed Google Scholar
Hewajulige IGN, Dhekney SA (2016) Papayas. In: Caballero B, Finglas PM, Toldrá F (eds) Encyclopedia of Food and Health. Academic Press, Oxford, pp 209–212
Hsu PD, Lander ES, Zhang F (2014) Development and Applications of CRISPR-Cas9 for Genome Engineering. Cell 157:1262–1278
Article CAS PubMed PubMed Central Google Scholar
Huang H, Wang Z, Cheng J, Zhao W, Li X, Wang H, Zhang Z, Sui X (2013) An efficient cucumber (Cucumis sativus L.) protoplast isolation and transient expression system. Sci Hortic 150:206–212
Jang JC, Sheen J (1994) Sugar sensing in higher plants. Plant Cell 6:1665–1679
CAS PubMed PubMed Central Google Scholar
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna Jennifer A, Charpentier E (2012) A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science 337:816–821
Article CAS PubMed PubMed Central Google Scholar
Kao KN, Constabel F, Michayluk MR, Gamborg OL (1974) Plant Protoplast Fusion and Growth of Intergeneric Hybrid Cells. Planta 120:215–227
Article CAS PubMed Google Scholar
Kao KN, Keller WA, Miller RA (1970) Cell division in newly formed cells from protoplasts of soybean. Exp Cell Res 62:338–340
Article CAS PubMed Google Scholar
Kao KN, Michayluk MR (1974) A Method for High-frequency Intergeneric Fusion of Plant Protoplasts. Planta 115:355–367
Article CAS PubMed Google Scholar
Kaur N, Alok A, Shivani KN, Pandey P, Awasthi P, Tiwari S (2018) CRISPR/Cas9-mediated efficient editing in phytoene desaturase (PDS) demonstrates precise manipulation in banana cv. Rasthali Gen Funct Integr Gen 18:89–99
Keller WA, Melchers G (1973) The Effect of High pH and Calcium on Tobacco Leaf Protoplast Fusion. Zeitschrift für Naturforschung C A J Biosci 28:737–741
Kim H, Choi J, Won K-H (2020) A stable DNA-free screening system for CRISPR/RNPs-mediated gene editing in hot and sweet cultivars of Capsicum annuum. BMC Plant Biol 20:449. https://doi.org/10.1186/s12870-020-02665-0
Article CAS PubMed PubMed Central Google Scholar
Kim S, Kim D, Cho SW, Kim J, Kim J-S (2014) Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24:1012–1019
Article CAS PubMed PubMed Central Google Scholar
Konovalova LN, Strelnikova SR, Zlobin NE, Kharchenko PN, Komakhin RA (2021) Efficiency of Transient Expression in Protoplasts of Various Potato Cultivars. Appl Biochem Microbiol 57:800–807
Comments (0)