The status of in vitro regeneration and genetic transformation in the recalcitrant oil seed crop Sesamum indicum L

Abdellatef E, Ahmed MMM, Daffalla HM, Khalafalla MM (2010) Enhancement of adventitious shoot regeneration in sesame (Sesamum indicum L.) cultivar Promo ky using ethylene inhibitors. J Phytol 2:61–67

Google Scholar 

Al-Shafeay AF, Ibrahim AS, Nesiem MR, Tawfik MS (2011) Establishment of regeneration and transformation system in Egyptian sesame (Sesamum indicum L.) cv Sohag 1. GM Crops 2:182–192

Article  PubMed  Google Scholar 

Ali GM, Yasumoto S, Seki-Katsuka M (2007) Assessment of genetic diversity in sesame (Sesamum indicum L.) detected by amplified fragment length polymorphism markers. Electron J Biotechnol 10:12–23

Article  Google Scholar 

Anandan R, Prakash M, Deenadhayalan T, Nivetha R, Kumar NS (2018) Efficient in vitro plant regeneration from cotyledon-derived callus cultures of sesame (Sesamum indicum L.) and genetic analysis of True-to-Type regenerants using RAPD and SSR markers. S Afr J Bot 119:244–251

Article  CAS  Google Scholar 

Andrade PBD, Freitas BM, Rocha EEDM, Lima JAD, Rufino LL (2014) Floral biology and pollination requirements of sesame (Sesamum indicum L.). Acta Sci Anim Sci 36:93–99

Article  Google Scholar 

Archbold DD (1988) Abscisic acid facilitates sucrose import by strawberry fruit explants and cortex disks in vitro. HortScience 23:880–881

Article  CAS  Google Scholar 

Ashwani S, Ravishankar GA, Giridhar P (2017) Silver nitrate and 2-(N-morpholine) ethane sulphonic acid in culture medium promotes rapid shoot regeneration from the proximal zone of the leaf of Capsicum frutescens Mill. Plant Cell Tiss Org Cult 129:175–180

Article  CAS  Google Scholar 

Badri J, Yepuri V, Ghanta A, Siva S, Siddiq EA (2014) Development of microsatellite markers in sesame (Sesamum indicum L.). Turk J Agric for 38:603–614

Article  CAS  Google Scholar 

Baskaran P, Jayabalan N (2006) In vitro mass propagation and diverse callus orientation on Sesamum indicum L.-an important oil plant. J Agric Technol 2:259–269

Google Scholar 

Bhat KV, Babrekar PP, Lakhanpaul S (1999) Study of genetic diversity in Indian and exotic sesame (Sesamum indicum L.) germplasm using random amplified polymorphic DNA (RAPD) markers. Euphytica 110:21–34

Article  CAS  Google Scholar 

Bhattacharyya J, Chakraborty A, Mitra J, Chakraborty S, Pradhan S, Manna A, Sikdar N, Sen SK (2015) Genetic transformation of cultivated sesame (Sesamum indicum L. cv Rama) through particle bombardment using 5-day-old apical, meristematic tissues of germinating seedlings. Plant Cell Tiss Org Cult 123:455–466

Article  CAS  Google Scholar 

Brown DCW, Leung DWM, Thorpe TA (1979) Osmotic requirement for shoot formation in tobacco callus. Physiol Plant 46:36–41

Article  CAS  Google Scholar 

Caboni E, Lauri P, Angell SD (2000) In vitro plant regeneration from callus of shoot apices in apple shoot culture. Plant Cell Rep 19:755–760

Article  CAS  PubMed  Google Scholar 

Chamandoosti F (2016) Influence of plant growth regulators and explant type on multiple shoot induction and somatic embryogenesis in sesame (Sesamum indicum L.). Int J Environ Agric 2:68–72

Google Scholar 

Choi Y, Jeong J (2002) Dormancy induction of somatic embryos of Siberian ginseng by high sucrose concentrations enhances the conservation of hydrated artificial seeds and dehydration resistance. Plant Cell Rep 20:1112–1116

Article  CAS  Google Scholar 

Chowdhury S, Basu A, Kundu S (2014) A new high-frequency Agrobacterium-mediated transformation technique for Sesamum indicum L. using de-embryonated cotyledon as explant. Protoplasma 25:1175–1190

Article  Google Scholar 

Chowdhury S, Basu A, Kundu S (2017) Overexpression of a new osmotin-like protein gene (SindOLP) confers tolerance against biotic and abiotic stresses in Sesame. Front Plant Sci 8:410

Article  PubMed  PubMed Central  Google Scholar 

Chu CC, Wang CC, Sun CS, Hsu C, Yin KC, Chu CY, Bi FY (1975) Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Sci Sin 18:659–668

Google Scholar 

Debnath AJ, Gangopadhyay G, Basu D, Sikdar SR (2018) An efficient protocol for in vitro direct shoot organogenesis of Sesamum indicum L. using cotyledon as explant. 3 Biotech 8:1–13

Article  Google Scholar 

Dixit A, Jin MH, Chung JW, Yu JW, Chung HK, Ma KH, Park YJ, Cho EG (2005) Development of polymorphic microsatellite markers in sesame (Sesamum indicum L.). Mol Ecol Notes 5:736–738

Article  CAS  Google Scholar 

Dossa K, Li D, Wang L, Zheng X, Liu A, Yu J, Wei X, Zhou R, Fonceka D, Diouf D, Liao B, Cissé N, Zhang X (2017) Transcriptomic, biochemical and physio-anatomical investigations shed more light on responses to drought stress in two contrasting sesame genotypes. Sci Rep 7:8755

Article  PubMed  PubMed Central  Google Scholar 

Du H, Zhang H, Wei L, Li C, Duan Y, Wang H (2019) A high-density genetic map constructed using specific length amplified fragment (SLAF) sequencing and QTL mapping of seed-related traits in sesame (Sesamum indicum L.). BMC Plant Biol 19:588

Article  CAS  PubMed  PubMed Central  Google Scholar 

Enikuomehin OA, Jimoh M, Olowe VIO, Ayo-John EI, Akintokun PO (2011) Effect of sesame (Sesamum indicum L.) population density in a sesame/maize (Zea mays L.) intercrop on the incidence and severity of foliar diseases of sesame. Arch Phytopath Plant Prot 44:168–178

Article  Google Scholar 

Estruch JJ, Peretó JG, Vercher Y, Beltrán JP (1989) Sucrose loading in isolated veins of Pisum sativum: regulation by abscisic acid, gibberellic acid, and cell turgor. Plant Physiol 91:259–265

Article  CAS  PubMed  PubMed Central  Google Scholar 

FAO (2020) Food and Agriculture Organization of the United Nations, FAOSTAT: FAO Statistical Databases. https://www.fao.org/faostat/en/#data/QCL/visualize

FAO (2021) Food and Agriculture Organization of the United Nations, FAOSTAT: FAO Statistical Databases. https://www.fao.org/faostat/en/#data/QCL/visualize

Feher A, Pasternak T, Otvos K, Miskolczi P, Dudits D (2002) Induction of embryogenic competence in somatic plant cells: a review. Biologia 57:5–12

CAS  Google Scholar 

Fuller DQ (2003) Further evidence on the prehistory of sesame. Asian Agri-History 7:127–137

Google Scholar 

Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

Article  CAS  PubMed  Google Scholar 

Gangopadhyay G, Poddar R, Gupta S (1998) Micropropagation of sesame (Sesamum indicum L.) by in vitro multiple shoot production from nodal explants. Phytomorphology 48:83–89

Google Scholar 

García-Martín G, Manzanera JA, González-Benito ME (2005) Effect of exogenous ABA on embryo maturation and quantification of endogenous levels of ABA and IAA in Quercus suber somatic embryos. Plant Cell Tiss Org Cult 80:171–177

Article  Google Scholar 

Gayatri T, Basu A (2020) Development of reproducible regeneration and transformation system for Sesamum indicum. Plant Cell Tiss Org Cult 143:441–456

Article  CAS  Google Scholar 

George L, Bapat VA, Rao PS (1987) In vitro multiplication of sesame (Sesamum indicum) through tissue culture. Ann Bot 60:17–21

Article  Google Scholar 

Honnale H, Rao S (2013) Direct somatic embryogenesis in Sesamum indicum (L.) cv-e8 from cotyledon and hypocotyl explants. Int J Appl Biol Pharm Technol 4:120–127

CAS  Google Scholar 

Hoerster G, Wang N, Ryan L, Wu E, Anand A, McBride K, Lowe K, Jones T, Gordon-Kamm B (2020) Use of non-integrating Zm-Wus2 vectors to enhance maize transformation. In Vitro Cell Dev Biol - Plant 56:265–279

Article  CAS  Google Scholar 

Hyde CL, Phillips GC (1996) Silver nitrate promotes shoot development and plant regeneration of chile pepper (Capsicum annum L.) via organogenesis. In Vitro Cell Dev Biol - Plant 32:72–80

Article  CAS  Google Scholar 

Islam F, Gill RA, Ali B, Farooq MA, Xu L, Najeeb U, Zhou W (2016) Sesame. In: Gupta SR (ed) Breeding oilseed crops for sustainable production: opportunities and constraints. Academic Press, pp 135–147

Chapter  Google Scholar 

Jimenez VM (2005) Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regul 47:91–110

Article  CAS  Google Scholar 

Kamal-Eldin A, Yousif G, Iskander GM, Appelqvist LA (1992) Seed lipids of Sesamum indicum L. and related wild species in Sudan I: fatty acids and triacylglycerols. Eur J Lipid Sci Technol 94:254–259

CAS  Google Scholar 

Kapoor S, Parmer SS, Yadav M, Chaudhary D, Sainger M, Jaiwal R, Jaiwal PK (2015) Sesame (Sesamum indicum L.). In: Wang K (ed) Agrobacterium Protocols. Methods in Molecular Biology. Humana Press, Totowa, 37–45

Khemkladngoen N, Cartagena J, Shibagaki N, Fukui K (2011) Adventitious shoot regeneration from juvenile cotyledons of a biodiesel producing Plant, Jatropha curcas L. J Biosci Bioeng 111:67–70

Article  CAS  PubMed  Google Scholar 

Kim JK, Baskar TB, Park SU (2016) Effect of carbon sources and sucrose concentrations on shoot organogenesis of Aloe saponaria. Biosci Biotechnol Res Asia 13:925–930

Article  Google Scholar 

Kobayashi T, Kinoshita M, Hattori S, Ogawa T, Tsuboi Y, Ishida M, Saito H (1990) Development of the sesame metallic fuel performance code. Nuc Technol 89:183–193

Article  CAS  Google Scholar 

Kong J, Martin-Ortigosa S, Finer J, Orchard N, Gunadi A, Batts LA, Thakare D, Rush B, Schmitz O, Stuiver M, Olhoft P, Pacheco-Villalobos D (2020) Overexpression of the transcription factor growth-regulating factor 5 improves transformation of dicot and monocot species. Front Plant Sci 11:1389

Article  Google Scholar 

Kulkarni VV, Ranganatha CN, Shankergoud I (2017) Interspecific crossing barriers in sesame (Sesamum indicum L.). Int J Curr Microbiol App Sci 6:4894–4900

Article  Google Scholar 

Kumar V, Ramakrishna A, Ravishankar GA (2007) Influence of different ethylene inhibitors on somatic embryogenesis and secondary embryogenesis from Coffea canephora P ex Fr. In Vitro Cell Dev Biol - Plant 43:602–607

Article  CAS  Google Scholar 

Kumar V, Parvatam G, Ravishankar GA (2009) AgNO3 - a potential regulator of ethylene activity and plant growth modulator. Electron J Biotechnol 12:1–15

Article  Google Scholar 

Comments (0)

No login
gif