Kurnick NB. Autonomic hyperreflexia and its control in patients with spinal cord lesions. Ann Intern Med. 1956;44:678–86.
Article CAS PubMed Google Scholar
Faaborg PM, Christensen P, Krassioukov A, Laurberg S, Frandsen E, Krogh K. Autonomic dysreflexia during bowel evacuation procedures and bladder filling in subjects with spinal cord injury. Spinal Cord. 2014;52:494–8. https://doi.org/10.1038/sc.2014.45.
Article CAS PubMed Google Scholar
Krassioukov A, Warburton DE, Teasell R, Eng JJ. Spinal Cord Injury Rehabilitation Evidence Research Team A systematic review of the management of autonomic dysreflexia after spinal cord injury. Arch Phys Med Rehabil. 2009;90:682–95.
Article PubMed PubMed Central Google Scholar
Blackmer J. Rehabilitation medicine: 1. Autonomic dysreflexia. CMAJ 2020;169:931–5.
de Groat WC, Yoshimura N. Changes in afferent activity after spinal cord injury. Neurourol Urodyn. 2010;29:63–76.
Article PubMed PubMed Central Google Scholar
Giannantoni A, Di Stasi SM, Stephen RL, Navarra P, Scivoletto G, Mearini E, et al. Intravesical capsaicin versus resiniferatoxin in patients with detrusor hyperreflexia: a prospective randomized study. J Urol. 2002;167:1710–4.
Article CAS PubMed Google Scholar
Igawa Y, Satoh T, Mizusawa H, Seki S, Kato H, Ishizuka O, et al. The role of capsaicin-sensitive afferents in autonomic dysreflexia in patients with spinal cord injury. BJU Int. 2003;91:637–41.
Article CAS PubMed Google Scholar
Holzer P, Bucsics A, Lembeck F. Distribution of capsaicin-sensitive nerve fibres containing immunoreactive substance P in cutaneous and visceral tissues of the rat. Neurosci Lett. 1982;31:253–7.
Article CAS PubMed Google Scholar
Shaker H, Wang Y, Loung D, Balbaa L, Fehlings MG, Hassouna MM. Role of C-afferent fibres in the mechanism of action of sacral nerve root neuromodulation in chronic spinal cord injury. BJU Int. 2000;85:905–10.
Article CAS PubMed Google Scholar
Green SA, Alon A, Ianus J, McNaughton KS, Tozzi CA, Reiss TF. Efficacy and safety of a neurokinin-1 receptor antagonist in postmenopausal women with overactive bladder with urge urinary incontinence. J Urol. 2006;176:2535–40.
Article CAS PubMed Google Scholar
Frenkl TL, Zhu H, Reiss T, Seltzer O, Rosenberg E, Green S. A multicenter, double-blind, randomized, placebo-controlled trial of a neurokinin-1 receptor antagonist for overactive bladder. J Urol. 2010;184:616–22.
Article CAS PubMed Google Scholar
Teasell RW, Arnold JM, Krassioukov A, Delaney GA. Cardiovascular consequences of loss of supraspinal control of the sympathetic nervous system after spinal cord injury. Arch Phys Med Rehabil. 2000;81:506–16.
Article CAS PubMed Google Scholar
Hou S, Duale H, Cameron AA, Abshire SM, Lyttle TS, Rabchevsky AG. Plasticity of lumbosacral propriospinal neurons is associated with the development of autonomic dysreflexia after thoracic spinal cord transection. J Comp Neurol. 2008;509:382–99.
Article PubMed PubMed Central Google Scholar
Llewellyn-Smith IJ, Martin CL, Minson JB, Pilowsky PM, Arnolda LF, Basbaum AI, et al. Neurokinin-1 receptor-immunoreactive sympathetic preganglionic neurons: target specificity and ultrastructure. Neuroscience. 1997;77:1137–49.
Article CAS PubMed Google Scholar
Cassam AK, Llewellyn-Smith IJ, Weaver LC. Catecholamine enzymes and neuropeptides are expressed in fibres and somata in the intermediate gray matter in chronic spinal rats. Neuroscience. 1997;78:829–41.
Article CAS PubMed Google Scholar
Klimaschewski L. Increased innervation of rat preganglionic sympathetic neurons by substance P containing nerve fibers in response to spinal cord injury. Neurosci Lett. 2001;307:73–76.
Article CAS PubMed Google Scholar
Rabchevsky AG, Patel SP, Duale H, Lyttle TS, O’Dell CR, Kitzman PH. Gabapentin for spasticity and autonomic dysreflexia after severe spinal cord injury. Spinal Cord. 2012;49:99–105.
Hou S, Blesch A, Lu P. A radio-telemetric system to monitor cardiovascular function in rats with spinal cord transection and embryonic neural stem cell grafts. J Vis Exp. 2014;92:e51914.
Rupniak NM, Carlson EJ, Shepheard S, Bentley G, Williams AR, Hill A, et al. Comparison of the functional blockade of rat substance P (NK1) receptors by GR205171, RP67580, SR140333 and NKP-608. Neuropharmacology. 2003;45:231–41.
Article CAS PubMed Google Scholar
Hutson PH, Patel S, Jay MT, Barton CL. Stress-induced increase of cortical dopamine metabolism: attenuation by a tachykinin NK1 receptor antagonist. Eur J Pharm. 2004;484:57–64.
Jung M, Calassi R, Maruani J, Barnouin MC, Souilhac J, Poncelet M, et al. Neuropharmacological characterization of SR 140333, a non-peptide antagonist of NK1 receptors. Neuropharmacology. 1994;33:167–79.
Article CAS PubMed Google Scholar
Lombet A, Spedding M. Differential effects of non-peptidic tachykinin receptor antagonists on Ca2 + channels. Eur J Pharm. 1994;267:113–5.
Varty GB, Cohen-Williams ME, Morgan CA, Pylak U, Duffy RA, Lachowicz JE, et al. The gerbil elevated plus-maze II: anxiolytic-like effects of selective neurokinin NK1 receptor antagonists. Neuropsychopharmacology. 2002;27:371–9.
Article CAS PubMed Google Scholar
Smith G, Harrison S, Bowers J, Wiseman J, Birch P. Non-specific effects of the tachykinin NK1 receptor antagonist, CP-99,994, in antinociceptive tests in rat, mouse and gerbil. Eur J Pharm. 1994;271:481–7.
Brocco M, Dekeyne A, Mannoury la Cour C, Touzard M, Girardon S, Veiga S, et al. Cellular and behavioural profile of the novel selective neurokinin 1 receptor antagonist vestipitant: a comparison to other agents. Eur Neuropsychopharmacol. 2008;18:729–50.
Article CAS PubMed Google Scholar
Rupniak NM, Webb JK, Williams AR, Carlson E, Boyce S, Hill RG. Antinociceptive activity of the tachykinin NK1 receptor antagonist, CP-99,994, in conscious gerbils. Br J Pharm. 1995;116:1937–43.
McLean S, Ganong A, Seymour PA, Snider RM, Desai MC, Rosen T, et al. Pharmacology of CP-99,994; a nonpeptide antagonist of the tachykinin neurokinin-1 receptor. J Pharm Exp Ther. 1993;267:472–9.
Gardner CJ, Armour DR, Beattie DT, Gale JD, Hawcock AB, Kilpatrick GJ, et al. GR205171: a novel antagonist with high affinity for the tachykinin NK1 receptor, and potent broad-spectrum anti-emetic activity. Regul Pept. 1996;65:45–53.
Article CAS PubMed Google Scholar
Sharif H, Hou S. Autonomic dysreflexia: a cardiovascular disorder following spinal cord injury. Neural Regen Res. 2017;12:1390–1400.
Article PubMed PubMed Central Google Scholar
Bycroft J, Shergill IS, Choong EAL, Arya N, Shah PJR. Autonomic dysreflexia: a medical emergency. Postgrad Med J. 2005;81:232–5.
Comments (0)