A Journey Through JAK Inhibitors for the Treatment of Myeloproliferative Diseases

Dameshek W. Editorial: some speculations on the myeloproliferative syndromes. Blood [Internet]. 19516(4):372–375. https://ashpublications.org/blood/article/6/4/372/42488/Editorial-Some-Speculations-on-the [cited 2023 Feb 15];

Martin K. Risk factors for and management of MPN-associated bleeding and thrombosis. Curr Hematol Malig Rep [Internet]. 2017 12(5):389–396. https://pubmed.ncbi.nlm.nih.gov/28948496/ [cited 2023 Feb 15];

Baumeister J, Chatain N, Sofias AM, Lammers T, Koschmieder S. Progression of myeloproliferative neoplasms (MPN): diagnostic and therapeutic perspectives. Cells [Internet]. 202110(12). https://pubmed.ncbi.nlm.nih.gov/34944059/ [cited 2023 Feb 15]

Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJP, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell [Internet]. 2005 7(4):387–397. https://pubmed.ncbi.nlm.nih.gov/15837627/ [cited 2023 Feb 15];

Harrison DA. The JAK/STAT pathway. Cold Spring Harb Perspect Biol [Internet]. 2012;4(3). /pmc/articles/PMC3282412/ [cited 2023 Feb 15]

Pardanani AD, Levine RL, Lasho T, Pikman Y, Mesa RA, Wadleigh M, et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood [Internet]. 2006 108(10):3472–3476. https://pubmed.ncbi.nlm.nih.gov/16868251/ [cited 2023 Feb 15]

Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med [Internet]. 2013 369(25):2391–2405. https://pubmed.ncbi.nlm.nih.gov/24325359/ [cited 2023 Feb 15];

Tefferi A. Primary myelofibrosis: 2021 update on diagnosis, risk-stratification and management. Am J Hematol [Internet]. 2021 96145–162. https://onlinelibrary.wiley.com/doi/full/10.1002/ajh.26050 [cited 2023 Feb 15];

Barosi G, Rosti V. Novel strategies for patients with chronic myeloproliferative disorders. Curr Opin Hematol [Internet]. 200916(2):129–134. https://pubmed.ncbi.nlm.nih.gov/19468275/ [cited 2023 Feb 15]

Verstovsek S. Therapeutic potential of JAK2 inhibitors. Hematol Am Soc Hematol Educ Program [Internet]. 2009636–642. https://pubmed.ncbi.nlm.nih.gov/20008249/ [cited 2023 Feb 15];

Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosisN Engl J Med [Internet]. 2012 366(9):799–807. https://pubmed.ncbi.nlm.nih.gov/22375971/ [cited 2023 Feb 15]

Harrison C, Kiladjian JJ, Al-Ali HK, Gisslinger H, Waltzman R, Stalbovskaya V, et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med [Internet]. 2012 366(9):787–798. https://pubmed.ncbi.nlm.nih.gov/22375970/ [cited 2023 Feb 15]

Verstovsek S, Kantarjian HM, Estrov Z, Cortes JE, Thomas DA, Kadia T, et al. Long-term outcomes of 107 patients with myelofibrosis receiving JAK1/JAK2 inhibitor ruxolitinib: survival advantage in comparison to matched historical controls. Blood [Internet]. 2012 120(6):1202–1209. https://pubmed.ncbi.nlm.nih.gov/22718840/ [cited 2023 Feb 15]

Vannucchi AM, Kantarjian HM, Kiladjian JJ, Gotlib J, Cervantes F, Mesa RA, et al. A pooled analysis of overall survival in COMFORT-I and COMFORT-II, 2 randomized phase III trials of ruxolitinib for the treatment of myelofibrosis. Haematologica [Internet]. 2015 100(9):1139–1145. https://pubmed.ncbi.nlm.nih.gov/26069290/ [cited 2023 Feb 15];

Gupta V, Harrison C, Hexner EO, Al-Ali HK, Foltz L, Montgomery M, et al. The impact of anemia on overall survival in patients with myelofibrosis treated with ruxolitinib in the COMFORT studies. Haematologica [Internet]. 2016 101(12):e482–e484. https://pubmed.ncbi.nlm.nih.gov/27587385/ [cited 2023 Feb 15];

Verstovsek S, Gotlib J, Mesa RA, Vannucchi AM, Kiladjian JJ, Cervantes F, et al. Long-term survival in patients treated with ruxolitinib for myelofibrosis: COMFORT-I and -II pooled analyses. J Hematol Oncol [Internet]. 2017 https://pubmed.ncbi.nlm.nih.gov/28962635/ Sep 29 [cited 2023 Feb 15]

Guglielmelli P, Ghirardi A, Carobbio A, Masciulli A, Maccari C, Mora B, et al. Impact of ruxolitinib on survival of patients with myelofibrosis in the real world: update of the ERNEST study. Blood Adv [Internet]. 2022 ;6(2):373–375. https://ashpublications.org/bloodadvances/article/6/2/373/477919/Impact-of-ruxolitinib-on-survival-of-patients-with Jan 25 [cited 2023 Mar 23]

Palandri F, Palumbo GA, Bonifacio M, Tiribelli M, Benevolo G, Martino B, et al. Baseline factors associated with response to ruxolitinib: an independent study on 408 patients with myelofibrosis. Oncotarget [Internet]. 2017; 8(45):79073–79086. https://pubmed.ncbi.nlm.nih.gov/29108288/ [cited 2023 Feb 15]

Passamonti F, Gupta V, Martino B, Foltz L, Zaritskey A, Al-Ali HK, et al. Comparing the safety and efficacy of ruxolitinib in patients with Dynamic International Prognostic Scoring System low-, intermediate-1-, intermediate-2-, and high-risk myelofibrosis in JUMP, a phase 3b, expanded-access study. Hematol Oncol [Internet]. 2021 ;39(4):558–566. https://pubmed.ncbi.nlm.nih.gov/34224180/ [cited 2023 Feb 15]

Gupta V, Harrison C, Hexner EO, Al-Ali HK, Foltz L, Montgomery M, et al. The impact of anemia on overall survival in patients with myelofibrosis treated with ruxolitinib in the COMFORT studies. Haematologica [Internet]. 2016 101(12):e482–e484. https://pubmed.ncbi.nlm.nih.gov/27587385/ [cited 2023 Feb 15]

Cervantes F, Ross DM, Radinoff A, Palandri F, Myasnikov A, Vannucchi AM, et al. Efficacy and safety of a novel dosing strategy for ruxolitinib in the treatment of patients with myelofibrosis and anemia: the REALISE phase 2 study. Leukemia [Internet]. 2021 35(12):3455. /pmc/articles/PMC8632662/ [cited 2023 Mar 23]

Elli EM, Baratè C, Mendicino F, Palandri F, Palumbo GA. Mechanisms underlying the anti-inflammatory and immunosuppressive activity of ruxolitinib. Front Oncol. 2019;7(9):1186.

Article  Google Scholar 

Verstovsek S, Mesa RA, Gotlib J, Gupta V, DiPersio JF, Catalano J V., et al. Long-term treatment with ruxolitinib for patients with myelofibrosis: 5-year update from the randomized, double-blind, placebo-controlled, phase 3 COMFORT-I trial. J Hematol Oncol [Internet]. 2017;10(1):1–14. https://pubmed.ncbi.nlm.nih.gov/28228106/ [cited 2023 Feb 15]

Harrison CN, Vannucchi AM, Kiladjian JJ, Al-Ali HK, Gisslinger H, Knoops L, et al. Long-term findings from COMFORT-II, a phase 3 study of ruxolitinib vs best available therapy for myelofibrosis. Leukemia [Internet]. 2016;30(8):1701.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lussana F, Cattaneo M, Rambaldi A, Squizzato A. Ruxolitinib-associated infections: a systematic review and meta-analysis. Am J Hematol [Internet]. 2018;93(3):339–47. https://doi.org/10.1002/ajh.24976.

Article  CAS  PubMed  Google Scholar 

Duminuco A, Scarso S, Cupri A, Laura Parrinello N, Villari L, Scuderi G, et al. Leishmania infection during ruxolitinib treatment: the cytokines-based immune response in the setting of immunocompromised patients. J Clin Med. 2023;12(2):578.

Article  PubMed  PubMed Central  Google Scholar 

Mollé N, Krichevsky S, Kermani P, Silver RT, Ritchie E, Scandura JM. Ruxolitinib can cause weight gain by blocking leptin signaling in the brain via JAK2/STAT3. Blood [Internet]. 2020 135(13):1062–1066. https://ashpublications.org/blood/article/135/13/1062/441063/Ruxolitinib-can-cause-weight-gain-by-blocking [cited 2023 Feb 15]

Palandri F, Palumbo GA, Elli EM, Polverelli N, Benevolo G, Martino B, et al. Ruxolitinib discontinuation syndrome: incidence, risk factors, and management in 251 patients with myelofibrosis. Blood Cancer J. 2021;711(1):1–4.

Google Scholar 

Vannucchi AM, Kiladjian JJ, Griesshammer M, Masszi T, Durrant S, Passamonti F, et al. Ruxolitinib versus standard therapy for the treatment of polycythemia vera. New Eng J Med. 2015;372(5):426–35. https://doi.org/10.1056/NEJMoa1409002.

Article  CAS  PubMed  Google Scholar 

• Kiladjian JJ, Zachee P, Hino M, Pane F, Masszi T, Harrison CN, et al. Long-term efficacy and safety of ruxolitinib versus best available therapy in polycythaemia vera (RESPONSE): 5-year follow up of a phase 3 study. Lancet Haematol [Internet]. 2020 7(3):e226–e237. http://www.thelancet.com/article/S2352302619302078/fulltext [cited 2023 Feb 15]

•• Harrison CN, Nangalia J, Boucher R, Jackson A, Yap C, O'Sullivan J, et al. Ruxolitinib versus best available therapy for polycythemia vera intolerant or resistant to hydroxycarbamide in a randomized trial. J Clin Oncol. 2023 May 1:JCO2201935. doi: https://doi.org/10.1200/JCO.22.01935. Epub ahead of print.

Harrison CN, Mead AJ, Panchal A, Fox S, Yap C, Gbandi E, et al. Ruxolitinib vs best available therapy for ET intolerant or resistant to hydroxycarbamide. Blood [Internet]. 2017;130(17):1889–1897. https://ashpublications.org/blood/article/130/17/1889/36509/Ruxolitinib-vs-best-available-therapy-for-ET [cited 2023 Feb 15]

• Koschmieder S. Ruxolitinib versus best available therapy in patients with essential thrombocythemia: pre-specified interim analysis of the randomized phase 2b ruxobeat clinical trial of the German study group for myeloproliferative neoplasms (GSG-MPN). ASH; 2022.

Mead AJ, Butt NM, Nagi W, Whiteway A, Kirkpatrick S, Rinaldi C, et al. A retrospective real-world study of the current treatment pathways for myelofibrosis in the United Kingdom: the REALISM UK study. Ther Adv Hematol [Internet]. 2022 . https://pubmed.ncbi.nlm.nih.gov/35371428/ [cited 2023 Feb 15]

Coltro G, Sant’Antonio E, Palumbo GA, Mannelli F, De Stefano V, Ruggeri M, et al. Assessment of the efficacy and tolerability of ruxolitinib for the treatment of myelofibrosis patients in a real-life setting: an Italian MYNERVA project. Cancer Med [Internet]. 2023. https://pubmed.ncbi.nlm.nih.gov/36708083/ [cited 2023 Feb 15]

Góra-Tybor J, Gołos A, Mikulski D, Helbig G, Sacha T, Lewandowski K, et al. Analysis of predictive factors for early response to ruxolitinib in 320 patients with myelofibrosis from the Polish Adult Leukemia Group (PALG) registry. Clin Lymphoma Myeloma Leuk [Internet] 2023 23e19–e26. https://pubmed.ncbi.nlm.nih.gov/36396583/ [cited 2023 Feb 15]

Bose P, Verstovsek S. JAK Inhibition for the treatment of myelofibrosis: limitations and future perspectives. Hemasphere [Internet]. 2020;4(4):e424.

Article  PubMed  PubMed Central  Google Scholar 

Pardanani A, Harrison C, Cortes JE, Cervantes F, Mesa RA, Milligan D, et al. Safety and efficacy of fedratinib in patients with primary or secondary myelofibrosis: a randomized clinical trial. JAMA Oncol [Internet]. 2015;1:643–51.

Article  PubMed  Google Scholar 

Harrison CN, Mesa RA, Jamieson C, Hood J, Bykowski J, Zuccoli G, et al. Case series of potential Wernicke’s encephalopathy in patients treated with fedratinib. Blood [Internet]. 2017 130(Supplement 1):4197–4197. https://ashpublications.org/blood/article/130/Supplement1/4197/72746/Case-Series-of-Potential-Wernicke-s-Encephalopathy [cited 2023 Feb 15]

Zhang Q, Zhang Y, Diamond S, Boer J, Harris JJ, Li Y, et al. The Janus kinase 2 inhibitor fedratinib inhibits thiamine uptake: a putative mechanism for the onset of Wernicke’s encephalopathy. Drug Metab Dispos. 2014;42:1656–62.

Article  PubMed  Google Scholar 

Harrison CN, Schaap N, Vannucchi AM, Kiladjian JJ, Tiu R, Zachee P, et al. Janus kinase-2 inhibitor fedratinib in patients with myelofibrosis previously treated with ruxolitinib (JAKARTA-2): a single-arm, open-label, non-randomised, phase 2, multicentre study. Lancet Haematol. 2017;4(7):e317–24.

Article  PubMed  PubMed Central  Google Scholar 

Harrison CN, Schaap N, Vannucchi AM, Kiladjian JJ, Passamonti F, Zweegman S, et al. Fedratinib induces spleen responses and reduces symptom burden in patients with myeloproliferative neoplasm (MPN)-associated myelofibrosis (MF) and low platelet counts, who were either ruxolitinib-naïve or were previously treated with ruxolitinib. Blood. 2019;134(Supplement_1):668.

Article  Google Scholar 

•• Gupta V. Safety and efficacy of fedratinib in patients with primary (P), post-polycythemia vera (Post-PV), and post-essential thrombocythemia (Post-ET) myelofibrosis (MF) previously treated with ruxolitinib: primary analysis of the FREEDOM Trial. ASH; 2022.

Vianelli N, Benevolo G, Vannucchi A, Harrison CN, Loschi M, Al-Ali HK, et al. A randomized, phase 3 trial of fedratinib versus best available therapy in patients with intermediate-2 or high-risk myelofibrosis previously treated with ruxolitinib (FREEDOM2). Blood. 2021;138(Supplement 1):3643.

Article  Google Scholar 

Reinwald M, Silva JT, Mueller NJ, Fortún J, Garzoni C, de Fijter JW, et al. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: an infectious diseases perspective (Intracellular signaling pathways: tyrosine kinase and mTOR inhibitors). Clin Microbiol Infect [Internet]. 2018 24Suppl 2:S53–S70. https://pubmed.ncbi.nlm.nih.gov/29454849/ [cited 2023 Feb 15]

Mesa RA, Vannucchi AM, Mead A, Egyed M, Szoke A, Suvorov A, et al. Pacritinib versus best available therapy for the treatment of myelofibrosis irrespective of baseline cytopenias (PERSIST-1): an international, randomised, phase 3 trial. Lancet Haematol [Internet]. 2017 4(5):e225–e236. https://pubmed.ncbi.nlm.nih.gov/28336242/ [cited 2023 Feb 15];

Mascarenhas J, Hoffman R, Talpaz M, Gerds AT, Stein B, Gupta V, et al. Pacritinib vs best available therapy, including ruxolitinib, in patients with myelofibrosis: a randomized clinical trial. JAMA Oncol [Internet]. 2018 4(5):652–659. https://pubmed.ncbi.nlm.nih.gov/29522138/ [cited 2023 Feb 15]

Gerds AT, Savona MR, Scott BL, Talpaz M, Egyed M, Harrison CN, et al. Determining the recommended dose of pacritinib: results from the PAC203 dose-finding trial in advanced myelofibrosis. Blood Adv [Internet]. 2020 4(22):5825–35. https://pubmed.ncbi.nlm.nih.gov/33232476/ [cited 2023 Feb 15]

Pemmaraju N, Harrison C, Gupta V, Verstovsek S, Scott B, Oh ST, et al. Risk-adjusted safety analysis of the oral JAK2/IRAK1 inhibitor pacritinib in patients with myelofibrosis. EJHaem [Internet]. 2022;3(4):1346.

Article  CAS  PubMed  PubMed Central  Google Scholar 

• Harrison C, Bose P, Mesa R, Gerds A, Oh S, Kiladijan JJ, et al. MPN-141 retrospective comparison of patient outcomes on pacritinib versus ruxolitinib in patients with myelofibrosis and thrombocytopenia. Clin Lymphoma Myeloma Leuk [Internet]. 2022 22:S326–S327. http://www.clinical-lymphoma-myeloma-leukemia.com/article/S2152265022014380/fulltext [cited 2023 Feb 15]

Chifotides HT, Bose P, Verstovsek S. Momelotinib: an emerging treatment for myelofibrosis patients with anemia. J Hematol Oncol [Internet]. 2022 15(1):1–17. https://jhoonline.biomedcentral.com/articles/10.1186/s13045-021-01157-4 [cited 2023 Feb 15]

Gale RP, Barosi G, Barbui T, Cervantes F, Dohner K, Dupriez B, et al. What are RBC-transfusion-dependence and -independence? Leuk Res [Internet]. 2011 35(1):8–11. https://pubmed.ncbi.nlm.nih.gov/20692036/ [cited 2023 Mar 23]

Oh S. Pacritinib is a potent ACVR1 Inhibitor with significant anemia benefit in patients with myelofibrosis. ASH; 2022.

Book  Google Scholar 

Mascarenhas J, Gerds A, Kiladjian JJ, Döhner K, Buckley S, Smith J, et al. MPN-038: PACIFICA: a randomized, controlled phase 3 study of pacritinib versus physician’s choice in patients with primary or secondary myelofibrosis and severe thrombocytopenia. Clin Lymphoma Myeloma Leuk. 2021;1(21):S352–3.

Article  Google Scholar 

Oh ST, Talpaz M, Gerds AT, Gupta V, Verstovsek S, Mesa R, et al. ACVR1/JAK1/JAK2 inhibitor momelotinib reverses transfusion dependency and suppresses hepcidin in myelofibrosis phase 2 trial. Blood Adv [Internet]. 2020;4(18):4282–4291. https://pubmed.ncbi.nlm.nih.gov/32915978/ [cited 2023 Feb 15]

Mesa RA, Kiladjian JJ, Catalano J, et al. SIMPLIFY-1: a phase III randomized trial of momelotinib versus ruxolitinib in Janus kinase inhibitor-naïve patients with myelofibrosis. J Clin Oncol [Internet]. 2017;35(34):3844–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harrison CN, Vannucchi AM, Platzbecker U, Cervantes F, Gupta V, Lavie D, et al. Momelotinib versus best available therapy in patients with myelofibrosis previously treated with ruxolitinib (SIMPLIFY 2): a randomised, open-label, phase 3 trial. Lancet Haematol [Internet]. 2018 5(2):e73–e81. http://www.thelancet.com/article/S2352302617302375/fulltext [cited 2023 Feb 15]

• Gangat N, Begna KH, Al-Kali A, Hogan W, Litzow M, Pardanani A, et al. Predictors of anemia response to momelotinib therapy in myelofibrosis and impact on survival. Am J Hematol [Internet]. 2023 98(2):282–289. https://pubmed.ncbi.nlm.nih.gov/36349465/ [cited 2023 Mar 23]

•• Verstovsek S, Gerds AT, Vannucchi AM, Al-Ali HK, Lavie D, Kuykendall AT, et al. Momelotinib versus danazol in symptomatic patients with anaemia and myelofibrosis (MOMENTUM): results from an international, double-blind, randomised, controlled, phase 3 study. Lancet [Internet]. 2023 401(10373):269–280. https://pubmed.ncbi.nlm.nih.gov/36709073/ [cited 2023 Mar 13]

• Mesa R. Clinical Outcomes of Myelofibrosis Patients Following Immediate Transition to Momelotinib from Ruxolitinib. ASH; 2022.

Book  Google Scholar 

Duminuco A, Nardo A, Giuffrida G, Leotta S, Markovic U, Giallongo C, et al. Myelofibrosis and survival prognostic models: a journey between past and future. J Clin Med. 2023;12:2188.

Article  CAS  PubMed  PubMed Central  Google Scholar 

• Sureau L, Orvain C, Ianotto JC, Ugo V, Kiladjian JJ, Luque Paz D, et al. Efficacy and tolerability of Janus kinase inhibitors in myelofibrosis: a systematic review and network meta-analysis. Blood Cancer J [Internet]. 2021 ;11(7). https://pubmed.ncbi.nlm.nih.gov/34315858/ [cited 2023 Mar 23]

Patel KP, Newberry KJ, Luthra R, Jabbour E, Pierce S, Cortes J, et al. Correlation of mutation profile and response in patients with myelofibrosis treated with ruxolitinib. Blood [Internet]. 2015;126(6):790–797. https://pubmed.ncbi.nlm.nih.gov/26124496/ [cited 2023 Feb 15]

Tefferi A. Primary myelofibrosis: 2023 update on diagnosis, risk-stratification, and management. Am J Hematol [Internet]. 2023 Feb 6 [cited 2023 Mar 23]; https://onlinelibrary.wiley.com/doi/full/10.1002/ajh.26857

Porpaczy E, Tripolt S, Hoelbl-Kovacic A, Gisslinger B, Bago-Horvath Z, Casanova-Hevia E, et al. Aggressive B-cell lymphomas in patients with myelofibrosis receiving JAK1/2 inhibitor therapy. Blood [Internet]. 2018;132(7):694–706. https://ashpublications.org/blood/article/132/7/694/39442/Aggressive-B-cell-lymphomas-in-patients-with [cited 2023 Mar 23]

Pemmaraju N, Kantarjian H, Nastoupil L, Dupuis M, Zhou L, Pierce S, et al. Characteristics of patients with myeloproliferative neoplasms with lymphoma, with or without JAK inhibitor therapy. Blood [Internet]. 2019 ;133(21):2348–2351. https://ashpublications.org/blood/article/133/21/2348/272729/Characteristics-of-patients-with [cited 2023 Mar 23]

Oh S. Bone marrow fibrosis changes do not correlate with efficacy outcomes in myelofibrosis: analysis of more than 300 JAK inhibitor-naïve patients treated with momelotinib or ruxolitinib. ASH; 2022.

Google Scholar 

Verstovsek S, Talpaz M, Ritchie E, Wadleigh M, Odenike O, Jamieson C, et al. A phase I, open-label, dose-escalation, multicenter study of the JAK2 inhibitor NS-018 in patients with myelofibrosis. Leukemia. 2016;31(2):393–402. https://www.nature.com/articles/leu2016215 [cited 2023 Feb 15]

Mascarenhas JO, Talpaz M, Gupta V, Foltz LM, Savona MR, Paquette R, et al. Primary analysis of a phase II open-label trial of INCB039110, a selective JAK1 inhibitor, in patients with myelofibrosis. Haematologica [Internet]. 2017;102(2):327.

Article  CAS  PubMed  Google Scholar 

Zhang Y, Zhou H, Jiang Z, Wu D, Zhuang J, Li W, et al. Safety and efficacy of jaktinib in the treatment of Janus kinase inhibitor-naïve patients with myelofibrosis: results of a phase II trial. Am J Hematol [Internet]. 2022 ;971510–1519. https://pubmed.ncbi.nlm.nih.gov/36054786/ [cited 2023 Feb 15]

Palandri F, Breccia M, Bonifacio M, Polverelli N, Elli EM, Benevolo G, et al. Life after ruxolitinib: reasons for discontinuation, impact of disease phase, and outcomes in 218 patients with myelofibrosis. Cancer [Internet]. 2020;126(6):1243–52. https://doi.org/10.1002/cncr.32664.

Article  CAS  PubMed  Google Scholar 

Maffioli M, Mora B, Ball S, Iurlo A, Elli EM, Finazzi MC, et al. A prognostic model to predict survival after 6 months of ruxolitinib in patients with myelofibrosis. Blood Adv [Internet]. 2022 6(6):1855–1864. https://pubmed.ncbi.nlm.nih.gov/35130339/ [cited 2023 Feb 15]

Duminuco A, Nardo A, Garibaldi B, Vetro C, Longo A, Giallongo C, et al. Prediction of survival and prognosis migration from gold-standard scores in myelofibrosis patients treated with ruxolitinib applying the RR6 prognostic model in a monocentric real-life setting. J Clin Med[Internet]. 2022 11(24):7418. https://www.mdpi.com/2077-0383/11/24/7418/htm [cited 2023 Feb 15]

Scalzulli E, Ielo C, Luise C, Musiu P, Bisegna ML, Carmosino I, et al. RR6 prognostic model provides information about survival for myelofibrosis treated with ruxolitinib: validation in a real-life cohort. Blood Adv [Internet]. 2022 6(15):4424–4426. https://pubmed.ncbi.nlm.nih.gov/35737865/ [cited 2023 Feb 15]

Comments (0)

No login
gif