N.L. Dmitruk, S.Z. Malinich, Surface Plasmon Resonances and Their Manifestation in the Optical Properties of Nanostructures of Noble Metals, Ukrainian Journal of Physics, 9(1), 3 (2014); https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2019664.
N. Lawrence, L. Dal Negro, Light scattering, field localization and local density of states in co-axial plasmonic nanowires, Opt. Exp. 18(15), 16120 (2010); https://doi.org/10.1364/OE.18.016120.
K. Mitamura, T. Imae, Functionalization of Gold Nanorods Toward Their Applications, Plasmonic 4(1), 23(2009); https://doi.org/10.1007/s11468-008-9073-z.
J. Zhu, S. Zhao, J.-W. Zhao, J.-J. Li, Dielectric wall controlled resonance light scattering of coated long gold nanowire, Curr. Nanosci. 7(3), 377 (2011); https://doi.org/10.2174/157341311795542480.
E. Prodan, C. Radloff, N.J. Halas, P. Nordlander, A Hybridization Model for the Plasmon Response of Complex Nanostructures, Science 302(5644), 419 (2003); https://doi.org/10.1126/science.1089171.
H. Fu, X. Yang, X. Jiang, A. Yu, Bimetallic Ag–Au Nanowires: Synthesis, Growth Mechanism, and Catalytic Properties, Langmuir 29(23), 7134 (2013); https://doi.org/10.1021/la400753q.
S. E. Hunyadia, C. J. Murphy, Bimetallic silver–gold nanowires: fabrication and use in surface-enhanced Raman scattering, J. Mater. Chem. 16 (40), 3929 (2006); https://doi.org/10.1039/B607116C.
J. Zhu, Surface Plasmon Resonance from Bimetallic Interface in Au–Ag Core–Shell Structure Nanowires, Nanoscale Res. Lett., 4 (9), 977 (2009); https://doi.org/10.1007/s11671-009-9344-4.
L. Jin, Y. Sun, L. Shi, C. Lia, Y. Shena, PdPt Bimetallic Nanowires with Efficient Oxidase Mimic Activity for the Colorimetric Detection of Acid Phosphatase in Acidic Media, J. Mater. Chem. B 7 (29), 4561 (2019); https://doi.org/10.1039/C9TB00730J.
X. Cao, N. Wang, Y. Han, C. Gao, Y. Xu, M. Li, Y. Shao, PtAg bimetallic nanowires: Facile synthesis and their use as excellent electrocatalysts toward low-cost fuel cells, Nano Energy 12, 105 (2015); https://doi.org/10.1016/j.nanoen.2014.12.020.
Q. Fu, D.G. Zhang, M.F. Yi, X.X. Wang, Y.K. Chen, P. Wang, H. Ming, Effect of shell thickness on a Au–Ag core–shell nanorods-based plasmonic nano-sensor, Journal of Optics 14 (8), 085001 (2012); https://doi.org/10.1088/2040-8978/14/8/085001.
W. Eberhardt, Clusters as new materials, Surface Science 500 (1-3), 242 (2002); https://doi.org/10.1016/S0039-6028(01)01564-3.
K.Chatterjee, S.Basu, D.Chakravorty, Plasmon resonance absorption in sulfide-coated gold nanorods, Journal of Materials Research, 21 (1), 34 (2006); https://doi.org/10.1557/jmr.2006.0032.
P.M. Tomchuk, D.V. Butenko, Dependences of Dipole Plasmon Resonance Damping Constants on the Shape of Metallic Nanoparticles, Ukrainian Journal of Physics, 60 (10), 1042 (2015); https://doi.org/10.15407/ujpe60.10.1042.
Neil W. Ashcroft, N. David Mermin. Solid state physics (Saunders College Publishing, 1976).
P. B. Johnson, R. W. Christy, Optical Constants of the Noble Metals, Physical Review B 6 (12), 4370 (1972); https://doi.org/10.1103/PhysRevB.6.4370.
I.I. Shaganov, T.S.Perova, K. Berwick, The effect of the local field and dipole-dipole interactions on the absorption spectra of noble metals and the plasmon resonance of their nanoparticles, Photonics and Nanostructures - Fundamentals and Applications 27, 24 (2017); https://doi.org/10.1016/j.photonics.2017.09.003.
A.V. Korotun, A.A. Koval’, I.N. Titov, Optical Absorption of a Composite Based on Bilayer Metal–Dielectric Spherical Nanoparticles, J. Appl. Spectrosc. 87 (2), 240 (2020); https://doi.org/10.1007/s10812-020-00991-7.
N.I. Grigorchuk, P.M. Tomchuk, Optical and transport properties of spheroidal metal nanoparticles with account for the surface effect, Phys. Rev. B 84 (8), 085448 (2011); https://doi.org/10.1103/PhysRevB.84.085448.
Comments (0)