Orientation Properties of a Nematic Liquid Crystal in Two-Phase Microfluidic Systems

L. Zhang, Q. Chen, Y. Ma, and J. Sun, ACS Appl. Biol. Mater. 3, 107 (2020). https://doi.org/10.1021/acsabm.9b00853

Article  Google Scholar 

S. Sevim, A. Sorrenti, C. Franco, S. Furukawa, S. Pané, A. J. Demello, and J. Puigmartí-Luis, Chem. Soc. Rev. 47, 3788 (2018). https://doi.org/10.1039/c8cs00025e

Article  Google Scholar 

Y. G. Kim, S. Park, and S. H. Kim, Chem. Commun. 58, 10303 (2022). https://doi.org/10.1039/D2CC03629K

Article  Google Scholar 

H. Q. Chen, X. Y. Wang, H. K. Bisoyi, L. J. Chen, and Q. Li, Langmuir 37, 3789 (2021). https://doi.org/10.1021/acs.langmuir.1c00256

Article  Google Scholar 

J. Deng, D. Han, and J. Yang, Biosensors 11, 385 (2021). https://doi.org/10.3390/bios11100385

Article  Google Scholar 

A. S. Yakimov, I. A. Denisov, A. S. Bukatin, K. A. Lukyanenko, K. I. Belousov, I. V. Kukhtevich, E. N. Esimbekova, A. A. Evstrapov, and P. I. Belobrov, Micromachines 13, 1146 (2022). https://doi.org/10.3390/mi13071146

Article  Google Scholar 

M. Khan, S. Liu, L. Qi, C. Ma, S. Munir, L. Yu, and Q. Hu, Trends Anal. Chem. 144, 116434 (2021). https://doi.org/10.1016/j.trac.2021.116434

Article  Google Scholar 

B. Gollapelli, S. Rama Raju Ganji, A. Kumar Tatipamula, and J. Vallamkondu, J. Mol. Liq. 363, 119952 (2022). https://doi.org/10.1016/j.molliq.2022.119952

Article  Google Scholar 

B. Gollapelli, R. Suguru Pathinti, and J. Vallamkondu, ACS Appl. Nano Mater. 5, 11912 (2022). https://doi.org/10.1021/acsanm.2c02933

Article  Google Scholar 

O. A. Savchuk, J. J. Carvajal, J. Massons, C. Cascales, M. Aguiló, and F. Díaz, Sens. Actuators, A 250, 87 (2016). https://doi.org/10.1016/j.sna.2016.08.031

Article  Google Scholar 

J. W. Kim, Y. Oh, S. Lee, and S. H. Kim, Adv. Funct. Mater. 32, 2107275 (2022). https://doi.org/10.1002/adfm.202107275

Article  Google Scholar 

S. Gwon and S. Park, J. Ind. Eng. Chem. 99, 235 (2021). https://doi.org/10.1016/j.jiec.2021.04.032

Article  Google Scholar 

A. Sengupta, S. Herminghaus, and C. Bahr, Liq. Cryst. Rev. 2, 73 (2014). https://doi.org/10.1080/21680396.2014.963716

Article  Google Scholar 

S. Čopar, Ž. Kos, T. Emeršič, and U. Tkalec, Nat. Commun. 11, 59 (2020). https://doi.org/10.1038/s41467-019-13789-9

Article  ADS  Google Scholar 

A. Sengupta, U. Tkalec, and C. Bahr, Soft Matter 7, 6542 (2011). https://doi.org/10.1039/C1SM05052D

Article  ADS  Google Scholar 

M. Crespo, A. Majumdar, A. M. Ramos, and I. M. Grif-fiths, Phys. D (Amsterdam, Neth.) 351–352, 1 (2017). https://doi.org/10.1016/j.physd.2017.04.004

A. Sengupta, Liq. Cryst. Today 24, 70 (2015). https://doi.org/10.1080/1358314X.2015.1039196

Article  Google Scholar 

T. G. Anderson, E. Mema, L. Kondic, and L. J. Cummings, Int. J. Non-Lin. Mech. 75, 15 (2015). https://doi.org/10.1016/j.ijnonlinmec.2015.04.010

Article  Google Scholar 

S. L. Anna, Ann. Rev. Fluid Mech. 48, 285 (2016). https://doi.org/10.1146/annurev-fluid-122414-034425

Article  ADS  MathSciNet  Google Scholar 

J. Ma, S. M. Y. Lee, C. Yi, and C. W. Li, Lab on a Chip 17, 209 (2017). https://doi.org/10.1039/c6lc01049k

Article  Google Scholar 

B. D. Hamlington, B. Steinhaus, J. J. Feng, D. Link, M. J. Shelley, and A. Q. Shen, Liq. Cryst. 34, 861 (2007). https://doi.org/10.1080/02678290601171485

Article  Google Scholar 

S. Battat, D. A. Weitz, and G. M. Whitesides, Chem. Rev. 122, 6921 (2022). https://doi.org/10.1021/acs.chemrev.1c00985

Article  Google Scholar 

H. Song, J. D. Tice, and R. F. Ismagilov, Angew. Chem. Int. Ed. 42, 768 (2003). https://doi.org/10.1002/anie.200390203

Article  Google Scholar 

Y. Takenaka, M. Škarabot, and I. Muševič, Langmuir 36, 3234 (2020). https://doi.org/10.1021/acs.langmuir.0c00101

Article  Google Scholar 

E. Ramou, G. Rebordao, S. Palma, and A. C. A. Roque, Molecules 26, 6044 (2021). https://doi.org/10.3390/molecules26196044

Article  Google Scholar 

S. Shojaei-Zadeh and S. L. Anna, Langmuir 22, 9986 (2006). https://doi.org/10.1021/la061703i

Article  Google Scholar 

A. N. Bezrukov, V. V. Osipova, and Y. G. Galyametdinov, Russ. Chem. Bull. 71, 2092 (2022). https://doi.org/10.1007/s11172-022-3631-y

Article  Google Scholar 

A. D. Kurilov, D. N. Chausov, V. V. Osipova, R. N. Ku-chero, V. V. Belyaev, and Y. G. Galyametdinov, J. Mol. Liq. 339, 116747 (2021). https://doi.org/10.1016/j.molliq.2021.116747

Article  Google Scholar 

N. M. Selivanova, A. I. Galeeva, and Yu. G. Galyametdinov, Zhidk. Krist. Ispol’z., No. 1, 33 (2009).

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, and G. M. Whitesides, Electrophoresis 21, 27 (2000). https://doi.org/10.1002/(SICI)1522-2683(20000101)21:1<27::AID-ELPS27>3.0.CO;2-C

Article  Google Scholar 

P. Tabeling, Introduction to Microfluidics (Oxford Univ. Press, Oxford, 2005).

Google Scholar 

J. Berthier and P. Silberzan, Microfluidics for Biotechnology, 2nd ed. (Artech House, London, 2009).

Google Scholar 

N. M. Selivanova, A. I. Galeeva, and Yu. G. Galyametdinov, Int. J. Mol. Sci. 23, 13207 (2022). https://doi.org/10.3390/ijms232113207

Article  Google Scholar 

A. Sengupta, U. Tkalec, M. Ravnik, J. M. Yeomans, C. Bahr, and S. Herminghaus, Phys. Rev. Lett. 110, 048303 (2013). https://doi.org/10.1103/PhysRevLett.110.048303

Article  ADS  Google Scholar 

S. Copar, M. Ravnik, and S. Žumer, Crystals 11, 956 (2021). https://doi.org/10.3390/cryst11080956

Article  Google Scholar 

Comments (0)

No login
gif