Neural manifold analysis of brain circuit dynamics in health and disease

Ahrens, M. B., Li, J. M., Orger, M. B., et al. (2012). Brain wide neuronal dynamics during motor adaptation in zebrafish. Nature, 485(7399), 471–477.

Article  CAS  Google Scholar 

Alt, H. (2009). The computational geometry of comparing shapes. In: Efficient Algorithms. Springer, p 235–248

Altan, E., Solla, S. A., Miller, L. E. et al. (2021). Estimating the dimensionality of the manifold underlying multi-electrode neural recordings. PLoS Computational biology 17(11), e1008591

Aoi, M. C., & Pillow, J. W. (2018). Model-based targeted dimensionality reduction for neuronal population data. Advances in Neural Information Processing Systems, 31, 6690–6699.

Google Scholar 

Avitan, L., & Stringer, C. (2022). Not so spontaneous: Multi-dimensional representations of behaviors and context in sensory areas. Neuron. https://doi.org/10.1016/j.neuron.2022.06.019

Article  Google Scholar 

Belkin, M. (2003). Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15(6), 1373–1396.

Article  Google Scholar 

Besse, P., Guillouet, B., Loubes, J. M., et al. (2015). Review and perspective for distance based trajectory clustering. arXiv:1508.04904

Blair, D. C. (1979). Information Retrieval, 2nd Edition. Journal of the American Society for Information Science.

Bouchard, K. E., Mesgarani, N., Johnson, K., et al. (2013). Functional organization of human sensorimotor cortex for speech articulation. Nature, 495(7441), 327–332.

Article  CAS  Google Scholar 

Briggman, K. L., Abarbanel, H. D., & Kristan, W. B. (2005). Optical imaging of neuronal populations during decision-making. Science, 307(5711), 896–901.

Article  CAS  Google Scholar 

Broome, B. M., Jayaraman, V., & Laurent, G. (2006). Encoding and decoding of overlapping odor sequences. Neuron, 51(4), 467–482.

Article  CAS  Google Scholar 

Brown, S. L., Joseph, J., & Stopfer, M. (2005). Encoding a temporally structured stimulus with a temporally structured neural representation. Nature neuroscience, 8(11), 1568–1576.

Article  CAS  Google Scholar 

Busche, M. A., & Konnerth, A. (2015). Neuronal hyperactivity-a key defect in alzheimer’s disease? Bioessays, 37(6), 624–632.

Article  Google Scholar 

Busche, M. A., Eichhoff, G., Adelsberger, H., et al. (2008). Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer’s disease. Science, 321(5896), 1686–1689.

Article  CAS  Google Scholar 

Chandrasekaran, B., Gandour, J. T., & Krishnan, A. (2007). Neuroplasticity in the processing of pitch dimensions: A multidimensional scaling analysis of the mismatch negativity. Restorative neurology and neuroscience, 25(3–4), 195–210.

Google Scholar 

Chari, T., Banerjee, J., & Pachter, L. (2021). The specious art of single-cell genomics. bioRxiv:0825457696.

Chaudhuri, R., Gerçek, B., Pandey, B., et al. (2019). The intrinsic attractor manifold and population dynamics of a canonical cognitive circuit across waking and sleep. Nature Neuroscience, 22, 1512–1520.

Article  CAS  Google Scholar 

Chen, L., & Ng, R. (2004). On the marriage of lp-norms and edit distance. Proceedings of the Thirtieth international conference on Very large data bases-Volume, 30, 792–803.

Google Scholar 

Chen, L., Özsu, M. T., & Oria, V. (2005). Robust and fast similarity search for moving object trajectories. In: Proceedings of the 2005 ACM SIGMOD international conference on Management of data, pp 491–502.

Chestek, C. A., Batista, A. P., Santhanam, G., et al. (2007). Single-neuron stability during repeated reaching in macaque premotor cortex. Journal of Neuroscience, 27(40), 10742–10750.

Article  CAS  Google Scholar 

Chung, S., & Abbott, L. (2021). Neural population geometry: An approach for understanding biological and artificial neural networks. Current opinion in neurobiology, 70, 137–144.

Article  CAS  Google Scholar 

Churchland, M., Cunningham, J., Kaufman, M. T., et al. (2010). Cortical preparatory activity: representation of movement or first cog in a dynamical machine? Neuron, 68(3), 387–400.

Article  CAS  Google Scholar 

Churchland, M., Cunningham, J., Kaufman, M., et al. (2012). Neural population dynamics during reaching. Nature, 487, 51–56.

Article  CAS  Google Scholar 

Churchland, M. M., & Shenoy, K. V. (2007). Temporal complexity and heterogeneity of single-neuron activity in premotor and motor cortex. Journal of Neurophysiology, 97(6), 4235–4257.

Article  Google Scholar 

Clark, P. J., & Evans, F. C. (1954). Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology, 35(4), 445–453.

Article  Google Scholar 

Cleasby, I. R., Wakefield, E. D., Morrissey, B. J., et al. (2019). Using time-series similarity measures to compare animal movement trajectories in ecology. Behavioral Ecology and Sociobiology, 73(11), 1–19.

Article  Google Scholar 

Cohen, M. R., & Kohn, A. (2011). Measuring and interpreting neuronal correlations. Nature Neuroscience, 14(7), 811.

Article  CAS  Google Scholar 

Cohen, M. R., & Maunsell, J. H. (2010). A neuronal population measure of attention predicts behavioral performance on individual trials. Journal of Neuroscience, 30(45), 241–253.

Cunningham, J. P., & Yu, B. M. (2014). Dimensionality reduction for large-scale neural recordings. Nature Neuroscience, 17(11), 1500–1509.

Article  CAS  Google Scholar 

Cunningham, J. P., Yu, B. M., Shenoy, K. V., et al. (2007). Inferring neural firing rates from spike trains using gaussian processes. Advances in Neural Information Processing Systems, 20, 329–336.

Google Scholar 

Dellacherie, D., Bigand, E., Molin, P., et al. (2011). Multidimensional scaling of emotional responses to music in patients with temporal lobe resection. Cortex, 47(9), 1107–1115.

Article  CAS  Google Scholar 

Dijkstra, E. W., et al. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1(1), 269–271.

Article  Google Scholar 

DiMatteo, I., Genovese, C. R., & Kass, R. E. (2001). Bayesian curve-fitting with free-knot splines. Biometrika, 88(4), 1055–1071.

Article  Google Scholar 

Dimitriadis, G., Neto, J. P., & Kampff, A. R. (2018). t-sne visualization of large-scale neural recordings. Neural Computation, 30(7), 1750–1774.

Article  Google Scholar 

Ding, H., Trajcevski, G., Scheuermann, P., et al. (2008). Querying and mining of time series data: experimental comparison of representations and distance measures. Proceedings of the VLDB Endowment, 1(2), 1542–1552.

Article  Google Scholar 

Driscoll, L. N., Pettit, N. L., Minderer, M., et al. (2017). Dynamic reorganization of neuronal activity patterns in parietal cortex. Cell, 170(5), 986–999.

Article  CAS  Google Scholar 

Elsayed, G. F., Lara, A. H., Kaufman, M. T., et al. (2016). Reorganization between preparatory and movement population responses in motor cortex. Nature Communications, 7(1), 1–15.

Article  CAS  Google Scholar 

Feulner, B., & Clopath, C. (2021). Neural manifold under plasticity in a goal driven learning behaviour. PLoS Computational Biology 17(2), e1008621.

France, S. L., & Carroll, J. D. (2010). Two-way multidimensional scaling: A review. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and .Reviews) 41(5), 644–661.

Fréchet, M. M. (1906). Sur quelques points du calcul fonctionnel. Rendiconti del Circolo Matematico di Palermo (1884-1940), 22(1), 1–72.

Freeman, R., Mann, R., Guilford, T., et al. (2011). Group decisions and individual differences: route fidelity predicts flight leadership in homing pigeons (columba livia). Biology letters, 7(1), 63–66.

Article  Google Scholar 

Frost, N. A., Haggart, A., & Sohal, V. S. (2021). Dynamic patterns of correlated activity in the prefrontal cortex encode information about social behavior. PLoS Biology, 19(5), e3001235.

Fusi, S., Miller, E. K., & Rigotti, M. (2016). Why neurons mix: high dimensionality for higher cognition. Current Opinion in Neurobiology, 37, 66–74.

Article  CAS  Google Scholar 

Gallego, J., Perich, M., Chowdhury, R., et al. (2020). Long-term stability of cortical population dynamics underlying consistent behavior. Nature Neuroscience, 23, 1–11.

Article  Google Scholar 

Gallego, J. A., Perich, M. G., Miller, L. E., et al. (2017). Neural manifolds for the control of movement. Neuron, 94(5), 978–984.

Article  CAS  Google Scholar 

Gao, P., & Ganguli, S. (2015). On simplicity and complexity in the brave new world of large-scale neuroscience. Current Opinion in Neurobiology, 32, 148–155.

Article  CAS  Google Scholar 

Gardner, R. J., Hermansen, E., Pachitariu, M., et al. (2022). Toroidal topology of population activity in grid cells. Nature, 602(7895), 123–128.

Article  CAS  Google Scholar 

Go, M. A., Rogers, J., Gava, G. P., et al. (2021). Place cells in head-fixed mice navigating a floating real-world environment. Frontiers in Cellular Neuroscience, 15, 19.

Article  Google Scholar 

Grassberger, P., & Procaccia, I. (1983). Characterization of strange attractors. Physical Review Letters, 50(5), 346.

Article  Google Scholar 

Harvey, C. D., Coen, P., & Tank, D. W. (2012). Choice-specific sequences in parietal cortex during a virtual-navigation decision task. Nature, 484(7392), 62–68.

Article  CAS  Google Scholar 

Hosmer, D. W., Jovanovic, B., & Lemeshow, S. (1989). Best subsets logistic regression. Biometrics pp. 265–1270.

Humphries, M. D. (2020). Strong and weak principles of neural dimension reduction. arXiv:2011.08088

Irimia, A., Lei, X., Torgerson, C. M. et al. (2018). Support vector machines, multidimensional scaling and magnetic resonance imaging reveal structural brain abnormalities associated with the interaction between autism spectrum disorder and sex. Frontiers in Computational Neuroscience p. 93.

Ivosev, G., Burton, L., & Bonner, R. (2008). Dimensionality reduction and visualization in principal component analysis. Analytical chemistry, 80(13), 4933–4944.

Article  CAS  Google Scholar 

Jackson, J. E. (2005). A user’s guide to principal components. John Wiley & Sons.

Google Scholar 

Jazayeri, M., & Ostojic, S. (2021). Interpreting neural computations by examining intrinsic and embedding dimensionality of neural activity. Current Opinion in Neurobiology, 70, 113–120.

Article  CAS  Google Scholar 

Johnson, W., & Lindenstrauss, J. (1984). Extensions of lipschitz maps into a hilbert space. Contemporary Mathematics, 26, 189–206.

Article  Google Scholar 

Jolliffe, I. T. (2002). Principal component analysis for special types of data. Springer.

Google Scholar 

Kaufman, M. T., Churchland, M. M., Ryu, S. I., et al. (2014). Cortical activity in the null space: permitting preparation without movement. Nature Neuroscience, 17(3), 440–448.

Article  CAS  Google Scholar 

Kingsbury, L., Huang, S., Wang, J., et al. (2019). Correlated neural activity and encoding of behavior across brains of socially interacting animals. Cell, 178(2), 429–446.

Article  CAS  Google Scholar 

Kobak, D., Brendel, W., Constantinidis, C., et al. (2016). Demixed principal component analysis of neural population data. eLife 5, e10989.

Krauss, P., Metzner, C., Schilling, A., et al. (2018). A statistical method for analyzing and comparing spatiotemporal cortical activation patterns. Scientific reports, 8

Comments (0)

No login
gif