Ahrens, M. B., Li, J. M., Orger, M. B., et al. (2012). Brain wide neuronal dynamics during motor adaptation in zebrafish. Nature, 485(7399), 471–477.
Alt, H. (2009). The computational geometry of comparing shapes. In: Efficient Algorithms. Springer, p 235–248
Altan, E., Solla, S. A., Miller, L. E. et al. (2021). Estimating the dimensionality of the manifold underlying multi-electrode neural recordings. PLoS Computational biology 17(11), e1008591
Aoi, M. C., & Pillow, J. W. (2018). Model-based targeted dimensionality reduction for neuronal population data. Advances in Neural Information Processing Systems, 31, 6690–6699.
Avitan, L., & Stringer, C. (2022). Not so spontaneous: Multi-dimensional representations of behaviors and context in sensory areas. Neuron. https://doi.org/10.1016/j.neuron.2022.06.019
Belkin, M. (2003). Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15(6), 1373–1396.
Besse, P., Guillouet, B., Loubes, J. M., et al. (2015). Review and perspective for distance based trajectory clustering. arXiv:1508.04904
Blair, D. C. (1979). Information Retrieval, 2nd Edition. Journal of the American Society for Information Science.
Bouchard, K. E., Mesgarani, N., Johnson, K., et al. (2013). Functional organization of human sensorimotor cortex for speech articulation. Nature, 495(7441), 327–332.
Briggman, K. L., Abarbanel, H. D., & Kristan, W. B. (2005). Optical imaging of neuronal populations during decision-making. Science, 307(5711), 896–901.
Broome, B. M., Jayaraman, V., & Laurent, G. (2006). Encoding and decoding of overlapping odor sequences. Neuron, 51(4), 467–482.
Brown, S. L., Joseph, J., & Stopfer, M. (2005). Encoding a temporally structured stimulus with a temporally structured neural representation. Nature neuroscience, 8(11), 1568–1576.
Busche, M. A., & Konnerth, A. (2015). Neuronal hyperactivity-a key defect in alzheimer’s disease? Bioessays, 37(6), 624–632.
Busche, M. A., Eichhoff, G., Adelsberger, H., et al. (2008). Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer’s disease. Science, 321(5896), 1686–1689.
Chandrasekaran, B., Gandour, J. T., & Krishnan, A. (2007). Neuroplasticity in the processing of pitch dimensions: A multidimensional scaling analysis of the mismatch negativity. Restorative neurology and neuroscience, 25(3–4), 195–210.
Chari, T., Banerjee, J., & Pachter, L. (2021). The specious art of single-cell genomics. bioRxiv:0825457696.
Chaudhuri, R., Gerçek, B., Pandey, B., et al. (2019). The intrinsic attractor manifold and population dynamics of a canonical cognitive circuit across waking and sleep. Nature Neuroscience, 22, 1512–1520.
Chen, L., & Ng, R. (2004). On the marriage of lp-norms and edit distance. Proceedings of the Thirtieth international conference on Very large data bases-Volume, 30, 792–803.
Chen, L., Özsu, M. T., & Oria, V. (2005). Robust and fast similarity search for moving object trajectories. In: Proceedings of the 2005 ACM SIGMOD international conference on Management of data, pp 491–502.
Chestek, C. A., Batista, A. P., Santhanam, G., et al. (2007). Single-neuron stability during repeated reaching in macaque premotor cortex. Journal of Neuroscience, 27(40), 10742–10750.
Chung, S., & Abbott, L. (2021). Neural population geometry: An approach for understanding biological and artificial neural networks. Current opinion in neurobiology, 70, 137–144.
Churchland, M., Cunningham, J., Kaufman, M. T., et al. (2010). Cortical preparatory activity: representation of movement or first cog in a dynamical machine? Neuron, 68(3), 387–400.
Churchland, M., Cunningham, J., Kaufman, M., et al. (2012). Neural population dynamics during reaching. Nature, 487, 51–56.
Churchland, M. M., & Shenoy, K. V. (2007). Temporal complexity and heterogeneity of single-neuron activity in premotor and motor cortex. Journal of Neurophysiology, 97(6), 4235–4257.
Clark, P. J., & Evans, F. C. (1954). Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology, 35(4), 445–453.
Cleasby, I. R., Wakefield, E. D., Morrissey, B. J., et al. (2019). Using time-series similarity measures to compare animal movement trajectories in ecology. Behavioral Ecology and Sociobiology, 73(11), 1–19.
Cohen, M. R., & Kohn, A. (2011). Measuring and interpreting neuronal correlations. Nature Neuroscience, 14(7), 811.
Cohen, M. R., & Maunsell, J. H. (2010). A neuronal population measure of attention predicts behavioral performance on individual trials. Journal of Neuroscience, 30(45), 241–253.
Cunningham, J. P., & Yu, B. M. (2014). Dimensionality reduction for large-scale neural recordings. Nature Neuroscience, 17(11), 1500–1509.
Cunningham, J. P., Yu, B. M., Shenoy, K. V., et al. (2007). Inferring neural firing rates from spike trains using gaussian processes. Advances in Neural Information Processing Systems, 20, 329–336.
Dellacherie, D., Bigand, E., Molin, P., et al. (2011). Multidimensional scaling of emotional responses to music in patients with temporal lobe resection. Cortex, 47(9), 1107–1115.
Dijkstra, E. W., et al. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1(1), 269–271.
DiMatteo, I., Genovese, C. R., & Kass, R. E. (2001). Bayesian curve-fitting with free-knot splines. Biometrika, 88(4), 1055–1071.
Dimitriadis, G., Neto, J. P., & Kampff, A. R. (2018). t-sne visualization of large-scale neural recordings. Neural Computation, 30(7), 1750–1774.
Ding, H., Trajcevski, G., Scheuermann, P., et al. (2008). Querying and mining of time series data: experimental comparison of representations and distance measures. Proceedings of the VLDB Endowment, 1(2), 1542–1552.
Driscoll, L. N., Pettit, N. L., Minderer, M., et al. (2017). Dynamic reorganization of neuronal activity patterns in parietal cortex. Cell, 170(5), 986–999.
Elsayed, G. F., Lara, A. H., Kaufman, M. T., et al. (2016). Reorganization between preparatory and movement population responses in motor cortex. Nature Communications, 7(1), 1–15.
Feulner, B., & Clopath, C. (2021). Neural manifold under plasticity in a goal driven learning behaviour. PLoS Computational Biology 17(2), e1008621.
France, S. L., & Carroll, J. D. (2010). Two-way multidimensional scaling: A review. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and .Reviews) 41(5), 644–661.
Fréchet, M. M. (1906). Sur quelques points du calcul fonctionnel. Rendiconti del Circolo Matematico di Palermo (1884-1940), 22(1), 1–72.
Freeman, R., Mann, R., Guilford, T., et al. (2011). Group decisions and individual differences: route fidelity predicts flight leadership in homing pigeons (columba livia). Biology letters, 7(1), 63–66.
Frost, N. A., Haggart, A., & Sohal, V. S. (2021). Dynamic patterns of correlated activity in the prefrontal cortex encode information about social behavior. PLoS Biology, 19(5), e3001235.
Fusi, S., Miller, E. K., & Rigotti, M. (2016). Why neurons mix: high dimensionality for higher cognition. Current Opinion in Neurobiology, 37, 66–74.
Gallego, J., Perich, M., Chowdhury, R., et al. (2020). Long-term stability of cortical population dynamics underlying consistent behavior. Nature Neuroscience, 23, 1–11.
Gallego, J. A., Perich, M. G., Miller, L. E., et al. (2017). Neural manifolds for the control of movement. Neuron, 94(5), 978–984.
Gao, P., & Ganguli, S. (2015). On simplicity and complexity in the brave new world of large-scale neuroscience. Current Opinion in Neurobiology, 32, 148–155.
Gardner, R. J., Hermansen, E., Pachitariu, M., et al. (2022). Toroidal topology of population activity in grid cells. Nature, 602(7895), 123–128.
Go, M. A., Rogers, J., Gava, G. P., et al. (2021). Place cells in head-fixed mice navigating a floating real-world environment. Frontiers in Cellular Neuroscience, 15, 19.
Grassberger, P., & Procaccia, I. (1983). Characterization of strange attractors. Physical Review Letters, 50(5), 346.
Harvey, C. D., Coen, P., & Tank, D. W. (2012). Choice-specific sequences in parietal cortex during a virtual-navigation decision task. Nature, 484(7392), 62–68.
Hosmer, D. W., Jovanovic, B., & Lemeshow, S. (1989). Best subsets logistic regression. Biometrics pp. 265–1270.
Humphries, M. D. (2020). Strong and weak principles of neural dimension reduction. arXiv:2011.08088
Irimia, A., Lei, X., Torgerson, C. M. et al. (2018). Support vector machines, multidimensional scaling and magnetic resonance imaging reveal structural brain abnormalities associated with the interaction between autism spectrum disorder and sex. Frontiers in Computational Neuroscience p. 93.
Ivosev, G., Burton, L., & Bonner, R. (2008). Dimensionality reduction and visualization in principal component analysis. Analytical chemistry, 80(13), 4933–4944.
Jackson, J. E. (2005). A user’s guide to principal components. John Wiley & Sons.
Jazayeri, M., & Ostojic, S. (2021). Interpreting neural computations by examining intrinsic and embedding dimensionality of neural activity. Current Opinion in Neurobiology, 70, 113–120.
Johnson, W., & Lindenstrauss, J. (1984). Extensions of lipschitz maps into a hilbert space. Contemporary Mathematics, 26, 189–206.
Jolliffe, I. T. (2002). Principal component analysis for special types of data. Springer.
Kaufman, M. T., Churchland, M. M., Ryu, S. I., et al. (2014). Cortical activity in the null space: permitting preparation without movement. Nature Neuroscience, 17(3), 440–448.
Kingsbury, L., Huang, S., Wang, J., et al. (2019). Correlated neural activity and encoding of behavior across brains of socially interacting animals. Cell, 178(2), 429–446.
Kobak, D., Brendel, W., Constantinidis, C., et al. (2016). Demixed principal component analysis of neural population data. eLife 5, e10989.
Krauss, P., Metzner, C., Schilling, A., et al. (2018). A statistical method for analyzing and comparing spatiotemporal cortical activation patterns. Scientific reports, 8
Comments (0)