Achard, P., & De Schutter, E. (2006). Complex parameter landscape for a complex neuron model. PLoS Computational Biology, 2(7), e94.
Article PubMed PubMed Central Google Scholar
Alonso, L. M., & Marder, E. (2019). Visualization of currents in neural models with similar behavior and different conductance densities. eLife, 8, e42722.
Article PubMed PubMed Central Google Scholar
Aoyama, T., Kamiyama, Y., Usui, S., Blanco, R., Vaquero, C. F., & de la Villa, P. (2000). Ionic current model of rabbit retinal horizontal cell. Neuroscience Research, 37(2), 141–151.
Article CAS PubMed Google Scholar
Art, J., & Goodman, M. (1996). Ionic conductances and hair cell tuning in the turtle cochlea a. Annals of the New York Academy of Sciences, 781(1), 103–122.
Article CAS PubMed Google Scholar
Aussel, A., Buhry, L., Tyvaert, L., & Ranta, R. (2018). A detailed anatomical and mathematical model of the hippocampal formation for the generation of sharp-wave ripples and theta-nested gamma oscillations. Journal of computational neuroscience, 45(3), 207–221.
Berry, H., & Genet, S. (2021). A model of on/off transitions in neurons of the deep cerebellar nuclei: deciphering the underlying ionic mechanisms. The Journal of Mathematical Neuroscience, 11(1), 1–34.
Bidaye, S. S., Bockemühl, T., & Büschges, A. (2018). Six-legged walking in insects: how cpgs, peripheral feedback, and descending signals generate coordinated and adaptive motor rhythms. Journal of neurophysiology, 119(2), 459–475.
Boos, R., Schneider, H., & Wassle, H. (1993). Voltage-and transmitter-gated currents of all-amacrine cells in a slice preparation of the rat retina. Journal of Neuroscience, 13(7), 2874–2888.
Article CAS PubMed Google Scholar
Burrows, M., Laurent, G., & Field, L. (1988). Proprioceptive inputs to nonspiking local interneurons contribute to local reflexes of a locust hindleg. Journal of Neuroscience, 8(8), 3085–3093.
Article CAS PubMed Google Scholar
Camperi, M., & Wang, X.-J. (1998). A model of visuospatial working memory in prefrontal cortex: recurrent network and cellular bistability. Journal of computational neuroscience, 5(4), 383–405.
Article CAS PubMed Google Scholar
Czeredys, M. (2020). Dysregulation of neuronal calcium signaling via store-operated channels in huntington’s disease. Frontiers in Cell and Developmental Biology, 8, 1645.
Davis, R., & Stretton, A. (1989a). Passive membrane properties of motorneurons and their role in long-distance signaling in the nematode ascaris. Journal of Neuroscience, 9(2), 403–414.
Article CAS PubMed Google Scholar
Davis, R. E., & Stretton, A. (1989b). Signaling properties of ascaris motorneurons: graded active responses, graded synaptic transmission, and tonic transmitter release. Journal of Neuroscience, 9(2), 415–425.
Article CAS PubMed Google Scholar
Dobosiewicz, M., Liu, Q., & Bargmann, C. I. (2019). Reliability of an interneuron response depends on an integrated sensory state. eLife, 8,
Article CAS PubMed PubMed Central Google Scholar
Drion, G., O’Leary, T., & Marder, E. (2015). Ion channel degeneracy enables robust and tunable neuronal firing rates. Proceedings of the National Academy of Sciences, 112(38), E5361–E5370.
Eliasmith, C., & Trujillo, O. (2014). The use and abuse of large-scale brain models. Current opinion in neurobiology, 25, 1–6.
Article CAS PubMed Google Scholar
Fettiplace, R. (1987). Electrical tuning of hair cells in the inner ear. Trends in Neurosciences, 10(10), 421–425.
Field, G. D., & Chichilnisky, E. (2007). Information processing in the primate retina: circuitry and coding. Annual Review of Neuroscience (Palo Alto, CA), 30, 1–30.
Geffeney, S. L., Cueva, J. G., Glauser, D. A., Doll, J. C., Lee, T. H. -C., Montoya, M., Karania, S., Garakani, A. M., Pruitt, B. L., & Goodman, M. B. (2011). Deg/enac but not trp channels are the major mechanoelectrical transduction channels in a c. elegans nociceptor. Neuron, 71(5), 845–857.
Giovannini, F., Knauer, B., Yoshida, M., & Buhry, L. (2017). The can-in network: A biologically inspired model for self-sustained theta oscillations and memory maintenance in the hippocampus. Hippocampus, 27(4), 450–463.
Article CAS PubMed Google Scholar
Goaillard, J. -M., & Marder, E. (2021). Ion channel degeneracy, variability, and covariation in neuron and circuit resilience. Annual Review of Neuroscience, 44.
Goodman, M. B., Hall, D. H., Avery, L., & Lockery, S. R. (1998). Active currents regulate sensitivity and dynamic range in c. elegans neurons. Neuron, 20(4), 763–772.
Gray, J. M., Hill, J. J., & Bargmann, C. I. (2005). A circuit for navigation in caenorhabditis elegans. Proceedings of the National Academy of Sciences, 102(9), 3184–3191.
Hart, A. C., Sims, S., & Kaplan, J. M. (1995). Synaptic code for sensory modalities revealed by c. elegans glr-1 glutamate receptor. Nature, 378(6552), 82–85.
Heyes, S., Pratt, W. S., Rees, E., Dahimene, S., Ferron, L., Owen, M. J., & Dolphin, A. C. (2015). Genetic disruption of voltage-gated calcium channels in psychiatric and neurological disorders. Progress in neurobiology, 134, 36–54.
Article CAS PubMed PubMed Central Google Scholar
Hughes, S. W., Cope, D. W., Tóth, T. I., Williams, S. R., & Crunelli, V. (1999). All thalamocortical neurones possess a t-type ca2+ ‘window’ current that enables the expression of bistability-mediated activities. The Journal of physiology, 517(3), 805–815.
Article CAS PubMed PubMed Central Google Scholar
Hurley, M. J., & Dexter, D. T. (2012). Voltage-gated calcium channels and parkinson’s disease. Pharmacology & therapeutics, 133(3), 324–333.
Izhikevich, E. M. (2007). Dynamical systems in neuroscience. MIT press.
Jiang, J., Su, Y., Zhang, R., Li, H., Tao, L., & Liu, Q. (2022). C. elegans enteric motor neurons fire synchronized action potentials underlying the defecation motor program. Nature Communications, 13(1), 1–15.
Jiménez Laredo, J. L., Naudin, L., Corson, N., & Fernandes C. M. (2022). A methodology for determining ion channels from membrane potential neuronal recordings. In Applications of Evolutionary Computation, pages 15–29. Springer International Publishing.
Kamaleddin, M. A. (2021). Degeneracy in the nervous system: from neuronal excitability to neural coding. BioEssays, p 2100148.
Kamiyama, Y., Wu, S. M., & Usui, S. (2009). Simulation analysis of bandpass filtering properties of a rod photoreceptor network. Vision research, 49(9), 970–978.
Kilicarslan, I., Zanetti, L., Novelli, E., Schwarzer, C., Strettoi, E., & Koschak, A. (2021). Knockout of cav1. 3 l-type calcium channels in a mouse model of retinitis pigmentosa. Scientific Reports, 11(1), 1–12.
Kindt, K. S., Viswanath, V., Macpherson, L., Quast, K., Hu, H., Patapoutian, A., & Schafer, W. R. (2007). Caenorhabditis elegans trpa-1 functions in mechanosensation. Nature neuroscience, 10(5), 568–577.
Article CAS PubMed Google Scholar
Ko, M. L., Liu, Y., Dryer, S. E., & Ko, G.Y.-P. (2007). The expression of l-type voltage-gated calcium channels in retinal photoreceptors is under circadian control. Journal of neurochemistry, 103(2), 784–792.
Article CAS PubMed PubMed Central Google Scholar
Koch, U., Bässler, U., & Brunner, M. (1989). Non-spiking neurons supress fluctuations in small networks. Biological cybernetics, 62(1), 75–81.
Kourennyi, D. E., Liu, X.-D., Hart, J., Mahmud, F., Baldridge, W. H., & Barnes, S. (2004). Reciprocal modulation of calcium dynamics at rod and cone photoreceptor synapses by nitric oxide. Journal of neurophysiology, 92(1), 477–483.
Article CAS PubMed Google Scholar
Laurent, G., & Burrows, M. (1989). Distribution of intersegmental inputs to nonspiking local interneurons and motor neurons in the locust. Journal of Neuroscience, 9(9), 3019–3029.
Article CAS PubMed Google Scholar
Laurent, G., & Burrows, M. (1989). Intersegmental interneurons can control the gain of reflexes in adjacent segments of the locust by their action on nonspiking local interneurons. Journal of Neuroscience, 9(9), 3030–3039.
Article CAS PubMed Google Scholar
Lindsay, T. H., Thiele, T. R., & Lockery, S. R. (2011). Optogenetic analysis of synaptic transmission in the central nervous system of the nematode caenorhabditis elegans. Nature communications, 2(1), 1–9.
Liu, P., Ge, Q., Chen, B., Salkoff, L., Kotlikoff, M. I., & Wang, Z. -W. (2011). Genetic dissection of ion currents underlying all-or-none action potentials in c. elegans body-wall muscle cells. The Journal of physiology, 589(1), 101–117.
Liu, P., Chen, B., Mailler, R., & Wang, Z.-W. (2017). Antidromic-rectifying gap junctions amplify chemical transmission at functionally mixed electrical-chemical synapses. Nature Communications, 8(1), 1–16.
Liu, Q., Hollopeter, G., & Jorgensen, E. M. (2009). Graded synaptic transmission at the caenorhabditis elegans neuromuscular junction. Proceedings of the National Academy of Sciences, 106(26), 10823–10828.
Liu, Q., Kidd, P. B., Dobosiewicz, M., & Bargmann, C. I. (2018). C. elegans awa olfactory neurons fire calcium-mediated all-or-none action potentials. Cell, 175(1), 57–70.
Liu, X.-D., & Kourennyi, D. E. (2004). Effects of tetraethylammonium on kx channels and simulated light response in rod photoreceptorss. Annals of Biomedical Engineering, 32(10), 1428–1442.
Lockery, S. R., Goodman, M. B., & Faumont, S. (2009). First report of action potentials in a c. elegans neuron is premature. Nature Neuroscience, 12(4), 365–366.
Mao, B.-Q., MacLeish, P. R., & Victor, J. D. (2003). Role of hyperpolarization-activated currents for the intrinsic dynamics of isolated retinal neurons. Biophysical Journal, 84(4), 2756–2767.
Article CAS PubMed PubMed Central Google Scholar
Mayama, C. (2014). Calcium channels and their blockers in intraocular pressure and glaucoma. European Journal of Pharmacology, 739, 96–105.
Comments (0)