Semin Respir Crit Care Med 
DOI: 10.1055/a-2649-9402
   
   
         Patricia Brazee
         1
                
               Division of Pulmonary and Critical Care Medicine, Department of Medicine, Center for
            Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts
         , 
         Nancy Allen
         2
                
               Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine,
            University of California San Francisco, San Francisco, California
         , 
         Rachel Knipe
         1
                
               Division of Pulmonary and Critical Care Medicine, Department of Medicine, Center for
            Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts
         , 
         Elizabeth F. Redente
         3
                
               Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver,
            Colorado
         , 
         Claude Jourdan Le Saux
         2
                
               Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine,
            University of California San Francisco, San Francisco, California
         › Author AffiliationsFunding This study was funded by the California Institute for Regenerative Medicine (grant
   no.: DISC0-13788) and U.S. Department of Health and Human Services, National Institutes
   of Health, National Heart, Lung, and Blood Institute (grant nos.: K01HL174822 [P.B.],
   K08HL169723 [N.A.], R01 HL168138 [R.K.], R35HL150767 [C.J.L.S.], RO1 HL147860 [E.R.],
   RO1 HL149741[E.R.], RO1 HL166250 [E.R.], and U01HL134766 [C.J.L.S.].
   
    
 Buy Article Permissions and Reprints
      Abstract
      
      
Bleomycin-induced lung injury remains the most widely used and well-characterized
         experimental model for studying pulmonary fibrosis, particularly idiopathic pulmonary
         fibrosis (IPF). This review provides a comprehensive analysis of the bleomycin model's
         utility, phases, variability, and translational relevance. Bleomycin administration
         in rodents induces acute epithelial injury followed by inflammation, fibroblast activation,
         extracellular matrix deposition, and eventual fibrosis. The model progresses through
         defined stages, acute inflammation (days 1–7), fibrogenesis (days 7–28), and in most
         cases, spontaneous resolution (days 42–63), making it suitable for understanding temporal
         aspects of fibrosis and repair, the cell populations involved, and the signaling mechanisms
         involved. Despite its advantages, the single-dose model lacks key features of human
         IPF, including persistent fibrosis, honeycomb cysts, and fibroblastic foci. Repetitive
         dosing and the use of aged mice have improved chronicity and recapitulation of progressive
         disease and observation of the expansion of aberrant epithelial cell populations in
         simple cyst structures. This review discusses route-specific effects, strain and sex
         susceptibilities, and the growing role of microbiome and genetic background in influencing
         fibrosis outcomes. It also highlights cellular responses across epithelial cell populations,
         fibroblasts, endothelial cells, and immune cell populations. Although limitations
         exist in this model—such as reversibility and incomplete modeling of human pathology—bleomycin
         remains invaluable for mechanistic studies and preclinical drug screening. Importantly,
         all FDA-approved antifibrotic drugs demonstrated efficacy in bleomycin models prior
         to clinical success. The review advocates for careful model selection, incorporation
         of persistent fibrosis models, and parallel use of human-relevant systems to enhance
         translational relevance in pulmonary fibrosis research.
      
         Keywords
         mouse model - 
         pulmonary fibrosis - 
         bleomycin
         Publication History
      
Article published online:
13 August 2025
      © 2025. Thieme. All rights reserved.
      Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
      
    
            References
         
         
         
1 
            
            Allawzi A, 
            
            
            Elajaili H, 
            
            
            Redente EF, 
            
            
            Nozik-Grayck E. 
            
            Oxidative toxicology of bleomycin: role of the extracellular redox environment. Curr
            Opin Toxicol 2019; 13: 68-73 
            
         
         
         
2 
            
            Meadors M, 
            
            
            Floyd J, 
            
            
            Perry MC. 
            
            Pulmonary toxicity of chemotherapy. Semin Oncol 2006; 33 (01) 98-105 
            
         
         
         
3 
            
            Jenkins RG, 
            
            
            Moore BB, 
            
            
            Chambers RC. 
            
            et al; 
            ATS Assembly on Respiratory Cell and Molecular Biology. 
            An official American Thoracic Society workshop report: use of animal models for the
            preclinical assessment of potential therapies for pulmonary fibrosis. Am J Respir
            Cell Mol Biol 2017; 56 (05) 667-679 
            
         
         
         
4 
            
            Moeller A, 
            
            
            Ask K, 
            
            
            Warburton D, 
            
            
            Gauldie J, 
            
            
            Kolb M. 
            
            The bleomycin animal model: a useful tool to investigate treatment options for idiopathic
            pulmonary fibrosis?. Int J Biochem Cell Biol 2008; 40 (03) 362-382 
            
         
         
         
5 
            
            Liu T, 
            
            
            De Los Santos FG, 
            
            
            Phan SH. 
            
            The bleomycin model of pulmonary fibrosis. Methods Mol Biol 2017; 1627: 27-42 
            
         
         
         
6 
            B Moore B, 
            
            Lawson WE, 
            
            
            Oury TD, 
            
            
            Sisson TH, 
            
            
            Raghavendran K, 
            
            
            Hogaboam CM. 
            
            Animal models of fibrotic lung disease. Am J Respir Cell Mol Biol 2013; 49 (02) 167-179
            
            
         
         
         
7 
            
            Kolb P, 
            
            
            Upagupta C, 
            
            
            Vierhout M. 
            
            et al. 
            The importance of interventional timing in the bleomycin model of pulmonary fibrosis.
            Eur Respir J 2020; 55 (06) 1901105 
            
         
         
         
8 
            
            Adamson IY, 
            
            
            Bowden DH. 
            
            The pathogenesis of bleomycin-induced pulmonary fibrosis in mice. Am J Pathol 1974;
            77 (02) 185-197 
            
         
         
         
9 
            
            Jones AW, 
            
            
            Reeve NL. 
            
            Ultrastructural study of bleomycin-induced pulmonary changes in mice. J Pathol 1978;
            124 (04) 227-233 
            
         
         
         
10 
            
            Adamson IY. 
            
            Pulmonary toxicity of bleomycin. Environ Health Perspect 1976; 16: 119-126 
            
         
         
         
11 
            
            Redente EF, 
            
            
            Keith RC, 
            
            
            Janssen W. 
            
            et al. 
            Tumor necrosis factor-α accelerates the resolution of established pulmonary fibrosis
            in mice by targeting profibrotic lung macrophages. Am J Respir Cell Mol Biol 2014;
            50 (04) 825-837 
            
         
         
         
12 
            
            Bordag N, 
            
            
            Biasin V, 
            
            
            Schnoegl D. 
            
            et al. 
            Machine learning analysis of the bleomycin mouse model reveals the compartmental and
            temporal inflammatory pulmonary fingerprint. iScience 2020; 23 (12) 101819 
            
         
         
         
13 
            
            Izbicki G, 
            
            
            Segel MJ, 
            
            
            Christensen TG, 
            
            
            Conner MW, 
            
            
            Breuer R. 
            
            Time course of bleomycin-induced lung fibrosis. Int J Exp Pathol 2002; 83 (03) 111-119
            
            
         
         
         
14 
            
            Redente EF, 
            
            
            Chakraborty S, 
            
            
            Sajuthi S. 
            
            et al. 
            Loss of Fas signaling in fibroblasts impairs homeostatic fibrosis resolution and promotes
            persistent pulmonary fibrosis. JCI Insight 2020; 6 (01) e141618 
            
         
         
         
15 
            
            Tighe RM, 
            
            
            Redente EF, 
            
            
            Yu YR. 
            
            et al. 
            Improving the quality and reproducibility of flow cytometry in the lung. An official
            American Thoracic Society workshop report. Am J Respir Cell Mol Biol 2019; 61 (02)
            150-161 
            
         
         
         
16 
            
            Misharin AV, 
            
            
            Morales-Nebreda L, 
            
            
            Reyfman PA. 
            
            et al. 
            Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung
            over the life span. J Exp Med 2017; 214 (08) 2387-2404 
            
         
         
         
17 
            
            McCubbrey AL, 
            
            
            Barthel L, 
            
            
            Mohning MP. 
            
            et al. 
            Deletion of c-FLIP from CD11bhi macrophages prevents development of bleomycin-induced lung fibrosis. Am J Respir
            Cell Mol Biol 2018; 58 (01) 66-78 
            
         
         
         
18 
            
            King EM, 
            
            
            Zhao Y, 
            
            
            Moore CM. 
            
            et al. 
            Gpnmb and Spp1 mark a conserved macrophage injury response masking fibrosis-specific
            programming in the lung. JCI Insight 2024; 9 (24) e182700 
            
         
         
         
19 
            
            Aran D, 
            
            
            Looney AP, 
            
            
            Liu L. 
            
            et al. 
            Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic
            macrophage. Nat Immunol 2019; 20 (02) 163-172 
            
         
         
         
20 
            
            Watanabe S, 
            
            
            Alexander M, 
            
            
            Misharin AV, 
            
            
            Budinger GRS. 
            
            The role of macrophages in the resolution of inflammation. J Clin Invest 2019; 129
            (07) 2619-2628 
            
         
         
         
21 
            
            Gibbons MA, 
            
            
            MacKinnon AC, 
            
            
            Ramachandran P. 
            
            et al. 
            Ly6Chi monocytes direct alternatively activated profibrotic macrophage regulation
            of lung fibrosis. Am J Respir Crit Care Med 2011; 184 (05) 569-581 
            
         
         
         
22 
            
            Li R, 
            
            
            Bernau K, 
            
            
            Sandbo N, 
            
            
            Gu J, 
            
            
            Preissl S, 
            
            
            Sun X. 
            
            
            Pdgfra marks a cellular lineage with distinct contributions to myofibroblasts in lung maturation
            and injury response. eLife 2018; 7: e36865 
            
         
         
         
23 
            
            Brass DM, 
            
            
            Yang IV, 
            
            
            Kennedy MP. 
            
            et al. 
            Fibroproliferation in LPS-induced airway remodeling and bleomycin-induced fibrosis
            share common patterns of gene expression. Immunogenetics 2008; 60 (07) 353-369 
            
         
         
         
24 
            
            Xie T, 
            
            
            Wang Y, 
            
            
            Deng N. 
            
            et al. 
            Single-cell deconvolution of fibroblast heterogeneity in mouse pulmonary fibrosis.
            Cell Rep 2018; 22 (13) 3625-3640 
            
         
         
         
25 
            
            Tsukui T, 
            
            
            Wolters PJ, 
            
            
            Sheppard D. 
            
            Alveolar fibroblast lineage orchestrates lung inflammation and fibrosis. Nature 2024;
            631 (8021) 627-634 
            
         
         
         
26 
            
            Tsukui T, 
            
            
            Sun KH, 
            
            
            Wetter JB. 
            
            et al. 
            Collagen-producing lung cell atlas identifies multiple subsets with distinct localization
            and relevance to fibrosis. Nat Commun 2020; 11 (01) 1920 
            
         
         
         
27 
            
            Yunt ZX, 
            
            
            Mohning MP, 
            
            
            Barthel L. 
            
            et al. 
            Kinetics of the angiogenic response in lung endothelium following acute inflammatory
            injury with bleomycin. Exp Lung Res 2014; 40 (08) 415-425 
            
         
         
         
28 
            
            Gilhodes JC, 
            
            
            Julé Y, 
            
            
            Kreuz S, 
            
            
            Stierstorfer B, 
            
            
            Stiller D, 
            
            
            Wollin L. 
            
            Quantification of pulmonary fibrosis in a bleomycin mouse model using automated histological
            image analysis. PLoS One 2017; 12 (01) e0170561 
            
         
         
         
29 
            
            Dobrinskikh E, 
            
            
            Estrella AM, 
            
            
            Hennessy CE. 
            
            et al. 
            Genes, other than Muc5b, play a role in bleomycin-induced lung fibrosis. Am J Physiol
            Lung Cell Mol Physiol 2021; 321 (02) L440-L450 
            
         
         
         
30 
            
            Redente EF, 
            
            
            Kopf KW, 
            
            
            Bahadur AN, 
            
            
            Robichaud A, 
            
            
            Lundblad LK, 
            
            
            McDonald LT. 
            
            Application-specific approaches to MicroCT for evaluation of mouse models of pulmonary
            disease. PLoS One 2023; 18 (02) e0281452 
            
         
         
         
31 
            
            El Agha E, 
            
            
            Moiseenko A, 
            
            
            Kheirollahi V. 
            
            et al. 
            Two-way conversion between lipogenic and myogenic fibroblastic phenotypes marks the
            progression and resolution of lung fibrosis. Cell Stem Cell 2017; 20 (04) 571 
            
         
         
         
32 
            
            Hecker L, 
            
            
            Logsdon NJ, 
            
            
            Kurundkar D. 
            
            et al. 
            Reversal of persistent fibrosis in aging by targeting Nox4-Nrf2 redox imbalance. Sci
            Transl Med 2014; 6 (231) 231ra47 
            
         
         
         
33 
            
            Redente EF, 
            
            
            Jacobsen KM, 
            
            
            Solomon JJ. 
            
            et al. 
            Age and sex dimorphisms contribute to the severity of bleomycin-induced lung injury
            and fibrosis. Am J Physiol Lung Cell Mol Physiol 2011; 301 (04) L510-L518 
            
         
         
         
34 
            
            Stout-Delgado HW, 
            
            
            Cho SJ, 
            
            
            Chu SG. 
            
            et al. 
            Age-dependent susceptibility to pulmonary fibrosis is associated with NLRP3 inflammasome
            activation. Am J Respir Cell Mol Biol 2016; 55 (02) 252-263 
            
         
         
         
35 
            
            Xu J, 
            
            
            Gonzalez ET, 
            
            
            Iyer SS. 
            
            et al. 
            Use of senescence-accelerated mouse model in bleomycin-induced lung injury suggests
            that bone marrow-derived cells can alter the outcome of lung injury in aged mice.
            J Gerontol A Biol Sci Med Sci 2009; 64 (07) 731-739 
            
         
         
         
36 
            
            Podolsky MJ, 
            
            
            Yang CD, 
            
            
            Valenzuela CL. 
            
            et al. 
            Age-dependent regulation of cell-mediated collagen turnover. JCI Insight 2020; 5 (10)
            e137519 
            
         
         
         
37 
            
            Weckerle J, 
            
            
            Mayr CH, 
            
            
            Fundel-Clemens K. 
            
            et al. 
            Transcriptomic and proteomic changes driving pulmonary fibrosis resolution in young
            and old mice. Am J Respir Cell Mol Biol 2023; 69 (04) 422-440 
            
         
         
         
38 
            
            Degryse AL, 
            
            
            Tanjore H, 
            
            
            Xu XC. 
            
            et al. 
            Repetitive intratracheal bleomycin models several features of idiopathic pulmonary
            fibrosis. Am J Physiol Lung Cell Mol Physiol 2010; 299 (04) L442-L452 
            
         
         
         
39 
            
            Redente EF, 
            
            
            Black BP, 
            
            
            Backos DS. 
            
            et al. 
            Persistent, progressive pulmonary fibrosis and epithelial remodeling in mice. Am J
            Respir Cell Mol Biol 2021; 64 (06) 669-676 
            
         
         
         
40 
            
            Cooley JC, 
            
            
            Javkhlan N, 
            
            
            Wilson JA. 
            
            et al. 
            Inhibition of antiapoptotic BCL-2 proteins with ABT-263 induces fibroblast apoptosis,
            reversing persistent pulmonary fibrosis. JCI Insight 2023; 8 (03) e163762 
            
         
         
         
41 
            
            Gul A, 
            
            
            Yang F, 
            
            
            Xie C. 
            
            et al. 
            Pulmonary fibrosis model of mice induced by different administration methods of bleomycin.
            BMC Pulm Med 2023; 23 (01) 91 
            
         
         
         
42 
            
            Chua F, 
            
            
            Gauldie J, 
            
            
            Laurent GJ. 
            
            Pulmonary fibrosis: searching for model answers. Am J Respir Cell Mol Biol 2005; 33
            (01) 9-13 
            
         
         
         
43 
            
            Walters DM, 
            
            
            Kleeberger SR. 
            
            Mouse models of bleomycin-induced pulmonary fibrosis. Curr Protocols Pharmacol 2008;
            Chapter 5: Unit 5.46 
            
         
         
         
44 
            
            Seo Y, 
            
            
            Qiu L, 
            
            
            Magnen M. 
            
            et al. 
            Optimizing anesthesia and delivery approaches for dosing into lungs of mice. Am J
            Physiol Lung Cell Mol Physiol 2023; 325 (02) L262-L269 
            
         
         
         
45 
            
            Nieuw Amerongen AV, 
            
            
            Oderkerk CH, 
            
            
            Veerman EC. 
            
            Influence of phytate on the adsorption of human salivary mucins onto hydroxyapatite.
            J Biol Buccale 1988; 16 (04) 203-208 
            
         
         
         
46 
            
            Egger C, 
            
            
            Cannet C, 
            
            
            Gérard C. 
            
            et al. 
            Administration of bleomycin via the oropharyngeal aspiration route leads to sustained
            lung fibrosis in mice and rats as quantified by UTE-MRI and histology. PLoS One 2013;
            8 (05) e63432 
            
         
         
         
47 
            
            Cao Z, 
            
            
            Lis R, 
            
            
            Ginsberg M. 
            
            et al. 
            Targeting of the pulmonary capillary vascular niche promotes lung alveolar repair
            and ameliorates fibrosis. Nat Med 2016; 22 (02) 154-162 
            
         
         
         
48 
            
            Headley L, 
            
            
            Bi W, 
            
            
            Wilson C. 
            
            et al. 
            Low-dose administration of bleomycin leads to early alterations in lung mechanics.
            Exp Physiol 2018; 103 (12) 1692-1703 
            
         
         
         
49 
            
            Lazo JS, 
            
            
            Humphreys CJ. 
            
            Lack of metabolism as the biochemical basis of bleomycin-induced pulmonary toxicity.
            Proc Natl Acad Sci U S A 1983; 80 (10) 3064-3068 
            
         
         
         
50 
            
            Liang M, 
            
            
            Lv J, 
            
            
            Zou L. 
            
            et al. 
            A modified murine model of systemic sclerosis: bleomycin given by pump infusion induced
            skin and pulmonary inflammation and fibrosis. Lab Invest 2015; 95 (03) 342-350 
            
         
         
         
51 
            
            Harrison Jr JH, 
            
            
            Lazo JS. 
            
            High dose continuous infusion of bleomycin in mice: a new model for drug-induced pulmonary
            fibrosis. J Pharmacol Exp Ther 1987; 243 (03) 1185-1194 
            
         
         
         
52 
            
            Shea BS, 
            
            
            Brooks SF, 
            
            
            Fontaine BA, 
            
            
            Chun J, 
            
            
            Luster AD, 
            
            
            Tager AM. 
            
            Prolonged exposure to sphingosine 1-phosphate receptor-1 agonists exacerbates vascular
            leak, fibrosis, and mortality after lung injury. Am J Respir Cell Mol Biol 2010; 43
            (06) 662-673 
            
         
         
         
53 
            
            Shea BS, 
            
            
            Probst CK, 
            
            
            Brazee PL. 
            
            et al. 
            Uncoupling of the profibrotic and hemostatic effects of thrombin in lung fibrosis.
            JCI Insight 2017; 2 (09) e86608 
            
         
         
         
54 
            
            Gendron DR, 
            
            
            Lemay AM, 
            
            
            Lecours PB. 
            
            et al. 
            FTY720 promotes pulmonary fibrosis when administered during the remodelling phase
            following a bleomycin-induced lung injury. Pulm Pharmacol Ther 2017; 44: 50-56 
            
         
         
         
55 
            
            Grandi A, 
            
            
            Ferrini E, 
            
            
            Zoboli M. 
            
            et al. 
            A mouse model of progressive lung fibrosis with cutaneous involvement induced by a
            combination of oropharyngeal and osmotic minipump bleomycin delivery. Am J Physiol
            Lung Cell Mol Physiol 2024; 326 (06) L736-L753 
            
         
         
         
56 
            
            Schrier DJ, 
            
            
            Kunkel RG, 
            
            
            Phan SH. 
            
            The role of strain variation in murine bleomycin-induced pulmonary fibrosis. Am Rev
            Respir Dis 1983; 127 (01) 63-66 
            
         
         
         
57 
            
            Voltz JW, 
            
            
            Card JW, 
            
            
            Carey MA. 
            
            et al. 
            Male sex hormones exacerbate lung function impairment after bleomycin-induced pulmonary
            fibrosis. Am J Respir Cell Mol Biol 2008; 39 (01) 45-52 
            
         
         
         
58 
            
            Lamichhane R, 
            
            
            Patial S, 
            
            
            Saini Y. 
            
            Higher susceptibility of males to bleomycin-induced pulmonary inflammation is associated
            with sex-specific transcriptomic differences in myeloid cells. Toxicol Appl Pharmacol
            2022; 454: 116228 
            
         
         
         
59 
            
            Raslan AA, 
            
            
            Pham TX, 
            
            
            Lee J. 
            
            et al. 
            Lung injury-induced activated endothelial cell states persist in aging-associated
            progressive fibrosis. Nat Commun 2024; 15 (01) 5449 
            
         
         
         
60 
            
            Klee S, 
            
            
            Picart-Armada S, 
            
            
            Wenger K. 
            
            et al. 
            Transcriptomic and proteomic profiling of young and old mice in the bleomycin model
            reveals high similarity. Am J Physiol Lung Cell Mol Physiol 2023; 324 (03) L245-L258
            
            
         
         
         
61 
            
            Chioma OS, 
            
            
            Mallott EK, 
            
            
            Chapman A. 
            
            et al. 
            Gut microbiota modulates lung fibrosis severity following acute lung injury in mice.
            Commun Biol 2022; 5 (01) 1401 
            
         
         
         
62 
            
            Yoon YM, 
            
            
            Hrusch CL, 
            
            
            Fei N. 
            
            et al. 
            Gut microbiota modulates bleomycin-induced acute lung injury response in mice. Respir
            Res 2022; 23 (01) 337 
            
         
         
         
63 
            
            O'Dwyer DN, 
            
            
            Ashley SL, 
            
            
            Gurczynski SJ. 
            
            et al. 
            Lung microbiota contribute to pulmonary inflammation and disease progression in pulmonary
            fibrosis. Am J Respir Crit Care Med 2019; 199 (09) 1127-1138 
            
         
         
         
64 
            
            Yang D, 
            
            
            Chen X, 
            
            
            Wang J. 
            
            et al. 
            Dysregulated lung commensal bacteria drive interleukin-17B production to promote pulmonary
            fibrosis through their outer membrane vesicles. Immunity 2019; 50 (03) 692-706.e7
            
            
         
         
         
65 
            
            Wuyts WA, 
            
            
            Willems S, 
            
            
            Vos R. 
            
            et al. 
            Azithromycin reduces pulmonary fibrosis in a bleomycin mouse model. Exp Lung Res 2010;
            36 (10) 602-614 
            
         
         
         
66 
            
            Rudders RA, 
            
            
            Hensley GT. 
            
            Bleomycin pulmonary toxicity. Chest 1973; 63 (04) 627-628 
            
         
         
         
67 
            
            Usuki J, 
            
            
            Fukuda Y. 
            
            Evolution of three patterns of intra-alveolar fibrosis produced by bleomycin in rats.
            Pathol Int 1995; 45 (08) 552-564 
            
         
         
         
68 
            
            Munger JS, 
            
            
            Huang X, 
            
            
            Kawakatsu H. 
            
            et al. 
            The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for
            regulating pulmonary inflammation and fibrosis. Cell 1999; 96 (03) 319-328 
            
         
         
         
69 
            
            Bauer Y, 
            
            
            Tedrow J, 
            
            
            de Bernard S. 
            
            et al. 
            A novel genomic signature with translational significance for human idiopathic pulmonary
            fibrosis. Am J Respir Cell Mol Biol 2015; 52 (02) 217-231 
            
         
         
         
70 
            
            Moore BB, 
            
            
            Hogaboam CM. 
            
            Murine models of pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2008; 294
            (02) L152-L160 
            
         
         
         
71 
            
            Borzone G, 
            
            
            Moreno R, 
            
            
            Urrea R, 
            
            
            Meneses M, 
            
            
            Oyarzún M, 
            
            
            Lisboa C. 
            
            Bleomycin-induced chronic lung damage does not resemble human idiopathic pulmonary
            fibrosis. Am J Respir Crit Care Med 2001; 163 (07) 1648-1653 
            
         
         
         
72 
            
            Limjunyawong N, 
            
            
            Mitzner W, 
            
            
            Horton MR. 
            
            A mouse model of chronic idiopathic pulmonary fibrosis. Physiol Rep 2014; 2 (02) e00249
            
            
         
         
         
73 
            
            Raghu G, 
            
            
            Anstrom KJ, 
            
            
            King Jr TE, 
            
            
            Lasky JA, 
            
            
            Martinez FJ. 
            
            Idiopathic Pulmonary Fibrosis Clinical Research Network. 
            Prednisone, azathioprine, and N-acetylcysteine for pulmonary fibrosis. N Engl J Med
            2012; 366 (21) 1968-1977 
            
         
         
         
74 
            
            Song X, 
            
            
            Yu W, 
            
            
            Guo F. 
            
            Pirfenidone suppresses bleomycin-induced pulmonary fibrosis and periostin expression
            in rats. Exp Ther Med 2018; 16 (03) 1800-1806 
            
         
         
         
75 
            
            King Jr TE, 
            
            
            Bradford WZ, 
            
            
            Castro-Bernardini S. 
            
            et al; 
            ASCEND Study Group. 
            A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl
            J Med 2014; 370 (22) 2083-2092 
            
         
         
         
76 
            
            Richeldi L, 
            
            
            du Bois RM, 
            
            
            Raghu G. 
            
            et al; 
            INPULSIS Trial Investigators. 
            Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med 2014;
            370 (22) 2071-2082 
            
         
         
         
77 
            
            Kathiriya JJ, 
            
            
            Wang C, 
            
            
            Zhou M. 
            
            et al. 
            Human alveolar type 2 epithelium transdifferentiates into metaplastic KRT5+ basal cells. Nat Cell Biol 2022; 24 (01) 10-23 
            
         
         
         
78 
            
            Xu Y, 
            
            
            Mizuno T, 
            
            
            Sridharan A. 
            
            et al. 
            Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic
            pulmonary fibrosis. JCI Insight 2016; 1 (20) e90558 
            
         
         
         
79 
            
            Parimon T, 
            
            
            Chen P, 
            
            
            Stripp BR. 
            
            et al. 
            Senescence of alveolar epithelial progenitor cells: a critical driver of lung fibrosis.
            Am J Physiol Cell Physiol 2023; 325 (02) C483-C495 
            
         
         
         
80 
            
            Desai TJ, 
            
            
            Brownfield DG, 
            
            
            Krasnow MA. 
            
            Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature
            2014; 507 (7491) 190-194 
            
         
         
         
81 
            
            Miyata R, 
            
            
            Hasegawa K, 
            
            
            Menju T. 
            
            et al. 
            Lung fibrogenic microenvironment in mouse reconstitutes human alveolar structure and
            lung tumor. iScience 2022; 25 (09) 104912 
            
         
         
         
82 
            
            Wang F, 
            
            
            Ting C, 
            
            
            Riemondy KA. 
            
            et al. 
            Regulation of epithelial transitional states in murine and human pulmonary fibrosis.
            J Clin Invest 2023; 133 (22) e165612 
            
         
         
         
83 
            
            Chapman HA. 
            
            Epithelial-mesenchymal interactions in pulmonary fibrosis. Annu Rev Physiol 2011;
            73: 413-435 
            
         
         
         
84 
            
            Thamsen M, 
            
            
            Ghosh R, 
            
            
            Auyeung VC. 
            
            et al. 
            Small molecule inhibition of IRE1α kinase/RNase has anti-fibrotic effects in the lung.
            PLoS One 2019; 14 (01) e0209824 
            
         
         
         
85 
            
            Auyeung VC, 
            
            
            Downey MS, 
            
            
            Thamsen M. 
            
            et al. 
            IRE1α drives lung epithelial progenitor dysfunction to establish a niche for pulmonary
            fibrosis. Am J Physiol Lung Cell Mol Physiol 2022; 322 (04) L564-L580 
            
         
         
         
86 
            
            Katzen J, 
            
            
            Wagner BD, 
            
            
            Venosa A. 
            
            et al. 
            An SFTPC BRICHOS mutant links epithelial ER stress and spontaneous lung fibrosis.
            JCI Insight 2019; 4 (06) e126125 
            
         
         
         
87 
            
            Zhao M, 
            
            
            Wang L, 
            
            
            Wang M. 
            
            et al. 
            Targeting fibrosis, mechanisms and clinical trials. Signal Transduct Target Ther 2022;
            7 (01) 206 
            
         
         
         
88 
            
            Sisson TH, 
            
            
            Mendez M, 
            
            
            Choi K. 
            
            et al. 
            Targeted injury of type II alveolar epithelial cells induces pulmonary fibrosis. Am
            J Respir Crit Care Med 2010; 181 (03) 254-263 
            
         
         
         
89 
            
            McCall AS, 
            
            
            Gutor S, 
            
            
            Tanjore H. 
            
            et al. 
            Hypoxia-inducible factor 2 regulates alveolar regeneration after repetitive injury
            in three-dimensional cellular and in vivo models. Sci Transl Med 2025; 17 (780) eadk8623
            
            
         
         
         
90 
            
            Garcia O, 
            
            
            Hiatt MJ, 
            
            
            Lundin A. 
            
            et al. 
            Targeted type 2 alveolar cell depletion. A dynamic functional model for lung injury
            repair. Am J Respir Cell Mol Biol 2016; 54 (03) 319-330 
            
         
         
         
91 
            
            Nureki SI, 
            
            
            Tomer Y, 
            
            
            Venosa A. 
            
            et al. 
            Expression of mutant Sftpc in murine alveolar epithelia drives spontaneous lung fibrosis.
            J Clin Invest 2018; 128 (09) 4008-4024 
            
         
         
         
92 
            
            Povedano JM, 
            
            
            Martinez P, 
            
            
            Flores JM, 
            
            
            Mulero F, 
            
            
            Blasco MA. 
            
            Mice with pulmonary fibrosis driven by telomere dysfunction. Cell Rep 2015; 12 (02)
            286-299 
            
         
         
         
93 
            
            Mei Q, 
            
            
            Liu Z, 
            
            
            Zuo H, 
            
            
            Yang Z, 
            
            
            Qu J. 
            
            Idiopathic pulmonary fibrosis: an update on pathogenesis. Front Pharmacol 2022; 12:
            797292 
            
         
         
         
94 
            
            Li X, 
            
            
            Zhang H, 
            
            
            Soledad-Conrad V, 
            
            
            Zhuang J, 
            
            
            Uhal BD. 
            
            Bleomycin-induced apoptosis of alveolar epithelial cells requires angiotensin synthesis
            de novo. Am J Physiol Lung Cell Mol Physiol 2003; 284 (03) L501-L507 
            
         
         
         
95 
            
            Drakopanagiotakis F, 
            
            
            Xifteri A, 
            
            
            Polychronopoulos V, 
            
            
            Bouros D. 
            
            Apoptosis in lung injury and fibrosis. Eur Respir J 2008; 32 (06) 1631-1638 
            
         
         
         
96 
            
            Lawson WE, 
            
            
            Polosukhin VV, 
            
            
            Stathopoulos GT. 
            
            et al. 
            Increased and prolonged pulmonary fibrosis in surfactant protein C-deficient mice
            following intratracheal bleomycin. Am J Pathol 2005; 167 (05) 1267-1277 
            
         
         
         
97 
            
            Aoshiba K, 
            
            
            Tsuji T, 
            
            
            Nagai A. 
            
            Bleomycin induces cellular senescence in alveolar epithelial cells. Eur Respir J 2003;
            22 (03) 436-443 
            
         
         
         
98 
            
            Hewlett JC, 
            
            
            Kropski JA, 
            
            
            Blackwell TS. 
            
            Idiopathic pulmonary fibrosis: epithelial-mesenchymal interactions and emerging therapeutic
            targets. Matrix Biol 2018; 71-72: 112-127 
            
         
         
         
99 
            
            Mercer PF, 
            
            
            Johns RH, 
            
            
            Scotton CJ. 
            
            et al. 
            Pulmonary epithelium is a prominent source of proteinase-activated receptor-1-inducible
            CCL2 in pulmonary fibrosis. Am J Respir Crit Care Med 2009; 179 (05) 414-425 
            
         
         
         
100 
            
            Yamada Z, 
            
            
            Nishio J, 
            
            
            Motomura K. 
            
            et al. 
            Senescence of alveolar epithelial cells impacts initiation and chronic phases of murine
            fibrosing interstitial lung disease. Front Immunol 2022; 13: 935114 
            
         
         
         
101 
            
            Kadur Lakshminarasimha Murthy P, 
            
            
            Sontake V, 
            
            
            Tata A. 
            
            et al. 
            Human distal lung maps and lineage hierarchies reveal a bipotent progenitor. Nature
            2022; 604 (7904) 111-119 
            
         
         
         
102 
            
            Tashiro J, 
            
            
            Rubio GA, 
            
            
            Limper AH. 
            
            et al. 
            Exploring animal models that resemble idiopathic pulmonary fibrosis. Front Med (Lausanne)
            2017; 4: 118 
            
         
         
         
103 
            
            Vats A, 
            
            
            Chaturvedi P. 
            
            The regenerative power of stem cells: treating bleomycin-induced lung fibrosis. Stem
            Cells Cloning 2023; 16: 43-59 
            
         
         
         
104 
            
            Habermann AC, 
            
            
            Gutierrez AJ, 
            
            
            Bui LT. 
            
            et al. 
            Single-cell RNA sequencing reveals profibrotic roles of distinct epithelial and mesenchymal
            lineages in pulmonary fibrosis. Sci Adv 2020; 6 (28) eaba1972 
            
         
         
         
105 
            
            Fang Y, 
            
            
            Chung SSW, 
            
            
            Xu L. 
            
            et al. 
            RUNX2 promotes fibrosis via an alveolar-to-pathological fibroblast transition. Nature
            2025; 640 (8057) 221-230 
            
         
         
         
106 
            
            Li Q, 
            
            
            Wang Y, 
            
            
            Ji L. 
            
            et al. 
            Cellular and molecular mechanisms of fibrosis and resolution in bleomycin-induced
            pulmonary fibrosis mouse model revealed by spatial transcriptome analysis. Heliyon
            2023; 9 (12) e22461 
            
         
         
         
107 
            
            Lingampally A, 
            
            
            Truchi M, 
            
            
            Mauduit O. 
            
            et al. 
            Evidence for a lipofibroblast-to-Cthrc1
            + myofibroblast reversible switch during the development and resolution of lung fibrosis
            in young mice. Eur Respir J 2025; 65 (02) 2300482 
            
         
         
         
108 
            
            Tan Q, 
            
            
            Link PA, 
            
            
            Meridew JA. 
            
            et al. 
            Spontaneous lung fibrosis resolution reveals novel antifibrotic regulators. Am J Respir
            Cell Mol Biol 2021; 64 (04) 453-464 
            
         
         
         
109 
            
            Frangogiannis NG. 
            
            Fibroblast-extracellular matrix interactions in tissue fibrosis. Curr Pathobiol Rep
            2016; 4 (01) 11-18 
            
         
         
         
110 
            
            Kendall RT, 
            
            
            Feghali-Bostwick CA. 
            
            Fibroblasts in fibrosis: novel roles and mediators. Front Pharmacol 2014; 5: 123 
            
         
         
         
111 
            
            Tan C, 
            
            
            Jiang M, 
            
            
            Wong SS. 
            
            et al. 
            Soluble Thy-1 reverses lung fibrosis via its integrin-binding motif. JCI Insight 2019;
            4 (21) e131152 
            
         
         
         
112 
            
            Zhou Y, 
            
            
            Huang X, 
            
            
            Hecker L. 
            
            et al. 
            Inhibition of mechanosensitive signaling in myofibroblasts ameliorates experimental
            pulmonary fibrosis. J Clin Invest 2013; 123 (03) 1096-1108 
            
         
         
         
113 
            
            Hagimoto N, 
            
            
            Kuwano K, 
            
            
            Inoshima I. 
            
            et al. 
            TGF-beta 1 as an enhancer of Fas-mediated apoptosis of lung epithelial cells. J Immunol
            2002; 168 (12) 6470-6478 
            
         
         
         
114 
            
            Schiller HB, 
            
            
            Fernandez IE, 
            
            
            Burgstaller G. 
            
            et al. 
            Time- and compartment-resolved proteome profiling of the extracellular niche in lung
            injury and repair. Mol Syst Biol 2015; 11 (07) 819 
            
         
         
         
115 
            
            Hinz B, 
            
            
            Lagares D. 
            
            Evasion of apoptosis by myofibroblasts: a hallmark of fibrotic diseases. Nat Rev Rheumatol
            2020; 16 (01) 11-31 
            
         
         
         
116 
            
            Liu X, 
            
            
            Wong SS, 
            
            
            Taype CA. 
            
            et al. 
            Thy-1 interaction with Fas in lipid rafts regulates fibroblast apoptosis and lung
            injury resolution. Lab Invest 2017; 97 (03) 256-267 
            
         
         
         
117 
            
            Schafer MJ, 
            
            
            White TA, 
            
            
            Iijima K. 
            
            et al. 
            Cellular senescence mediates fibrotic pulmonary disease. Nat Commun 2017; 8: 14532
            
            
         
         
         
118 
            
            Kato K, 
            
            
            Logsdon NJ, 
            
            
            Shin YJ. 
            
            et al. 
            Impaired myofibroblast dedifferentiation contributes to nonresolving fibrosis in aging.
            Am J Respir Cell Mol Biol 2020; 62 (05) 633-644 
            
         
         
         
119 
            
            Atabai K, 
            
            
            Yang CD, 
            
            
            Podolsky MJ. 
            
            You say you want a resolution (of fibrosis). Am J Respir Cell Mol Biol 2020; 63 (04)
            424-435 
            
         
         
         
120 
            
            Lingampally A, 
            
            
            Truchi M, 
            
            
            Shi X. 
            
            et al. 
            Unraveling alveolar fibroblast and activated myofibroblast heterogeneity and differentiation
            trajectories during lung fibrosis development and resolution in young and old mice.
            Aging Cell 2025; 24 (05) e14503 
            
         
         
         
121 
            
            Kato S, 
            
            
            Inui N, 
            
            
            Hakamata A. 
            
            et al. 
            Changes in pulmonary endothelial cell properties during bleomycin-induced pulmonary
            fibrosis. Respir Res 2018; 19 (01) 127 
            
         
         
         
122 
            
            Strunz M, 
            
            
            Simon LM, 
            
            
            Ansari M. 
            
            et al. 
            Alveolar regeneration through a Krt8+ transitional stem cell state that persists in
            human lung fibrosis. Nat Commun 2020; 11 (01) 3559 
            
         
         
         
123 
            
            Murray LA, 
            
            
            Habiel DM, 
            
            
            Hohmann M. 
            
            et al. 
            Antifibrotic role of vascular endothelial growth factor in pulmonary fibrosis. JCI
            Insight 2017; 2 (16) e92192 
            
         
         
         
124 
            
            Baluk P, 
            
            
            Naikawadi RP, 
            
            
            Kim S. 
            
            et al. 
            Lymphatic proliferation ameliorates pulmonary fibrosis after lung injury. Am J Pathol
            2020; 190 (12) 2355-2375 
            
         
         
         
125 
            
            Caporarello N, 
            
            
            Meridew JA, 
            
            
            Aravamudhan A. 
            
            et al. 
            Vascular dysfunction in aged mice contributes to persistent lung fibrosis. Aging Cell
            2020; 19 (08) e13196 
            
         
         
         
126 
            
            Caporarello N, 
            
            
            Lee J, 
            
            
            Pham TX. 
            
            et al. 
            Dysfunctional ERG signaling drives pulmonary vascular aging and persistent fibrosis.
            Nat Commun 2022; 13 (01) 4170 
            
         
         
         
127 
            
            Tager AM, 
            
            
            LaCamera P, 
            
            
            Shea BS. 
            
            et al. 
            The lysophosphatidic acid receptor LPA1 links pulmonary fibrosis to lung injury by
            mediating fibroblast recruitment and vascular leak. Nat Med 2008; 14 (01) 45-54 
            
         
         
         
128 
            
            Knipe RS, 
            
            
            Spinney JJ, 
            
            
            Abe EA. 
            
            et al. 
            Endothelial-specific loss of sphingosine-1-phosphate receptor 1 increases vascular
            permeability and exacerbates bleomycin-induced pulmonary fibrosis. Am J Respir Cell
            Mol Biol 2022; 66 (01) 38-52 
            
         
         
         
129 
            
            Adams TS, 
            
            
            Schupp JC, 
            
            
            Poli S. 
            
            et al. 
            Single-cell RNA-seq reveals ectopic and aberrant lung-resident cell populations in
            idiopathic pulmonary fibrosis. Sci Adv 2020; 6 (28) eaba1983 
            
         
         
         
130 
            
            Ji WJ, 
            
            
            Ma YQ, 
            
            
            Zhou X. 
            
            et al. 
            Temporal and spatial characterization of mononuclear phagocytes in circulating, lung
            alveolar and interstitial compartments in a mouse model of bleomycin-induced pulmonary
            injury. J Immunol Methods 2014; 403 (1-2): 7-16 
            
         
         
         
131 
            
            Gasse P, 
            
            
            Mary C, 
            
            
            Guenon I. 
            
            et al. 
            IL-1R1/MyD88 signaling and the inflammasome are essential in pulmonary inflammation
            and fibrosis in mice. J Clin Invest 2007; 117 (12) 3786-3799 
            
         
         
         
132 
            
            Gasse P, 
            
            
            Riteau N, 
            
            
            Charron S. 
            
            et al. 
            Uric acid is a danger signal activating NALP3 inflammasome in lung injury inflammation
            and fibrosis. Am J Respir Crit Care Med 2009; 179 (10) 903-913 
            
         
         
         
133 
            
            Griffith JW, 
            
            
            Faustino LD, 
            
            
            Cottrell VI. 
            
            et al. 
            Regulatory T cell-derived IL-1Ra suppresses the innate response to respiratory viral
            infection. Nat Immunol 2023; 24 (12) 2091-2107 
            
         
         
         
134 
            
            Cohen ML, 
            
            
            Brumwell AN, 
            
            
            Ho TC. 
            
            et al. 
            A fibroblast-dependent TGF-β1/sFRP2 noncanonical Wnt signaling axis promotes epithelial
            metaplasia in idiopathic pulmonary fibrosis. J Clin Invest 2024; 134 (18) e174598
            
            
         
         
         
135 
            
            Kinder BW, 
            
            
            Brown KK, 
            
            
            Schwarz MI, 
            
            
            Ix JH, 
            
            
            Kervitsky A, 
            
            
            King Jr TE. 
            
            Baseline BAL neutrophilia predicts early mortality in idiopathic pulmonary fibrosis.
            Chest 2008; 133 (01) 226-232 
            
         
         
         
136 
            
            Moore BB, 
            
            
            Paine III R, 
            
            
            Christensen PJ. 
            
            et al. 
            Protection from pulmonary fibrosis in the absence of CCR2 signaling. J Immunol 2001;
            167 (08) 4368-4377 
            
            
 
        
Comments (0)