Peeling Back the Layers of the Bleomycin Model of Lung Fibrosis: Lessons Learned, Factors to Consider, and Future Directions

Semin Respir Crit Care Med
DOI: 10.1055/a-2649-9402

Patricia Brazee

1   Division of Pulmonary and Critical Care Medicine, Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts

,

Nancy Allen

2   Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, California

,

Rachel Knipe

1   Division of Pulmonary and Critical Care Medicine, Department of Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts

,

Elizabeth F. Redente

3   Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado

,

Claude Jourdan Le Saux

2   Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, California

› Author Affiliations
Funding This study was funded by the California Institute for Regenerative Medicine (grant no.: DISC0-13788) and U.S. Department of Health and Human Services, National Institutes of Health, National Heart, Lung, and Blood Institute (grant nos.: K01HL174822 [P.B.], K08HL169723 [N.A.], R01 HL168138 [R.K.], R35HL150767 [C.J.L.S.], RO1 HL147860 [E.R.], RO1 HL149741[E.R.], RO1 HL166250 [E.R.], and U01HL134766 [C.J.L.S.].  SFX Search Buy Article Permissions and Reprints Abstract

Bleomycin-induced lung injury remains the most widely used and well-characterized experimental model for studying pulmonary fibrosis, particularly idiopathic pulmonary fibrosis (IPF). This review provides a comprehensive analysis of the bleomycin model's utility, phases, variability, and translational relevance. Bleomycin administration in rodents induces acute epithelial injury followed by inflammation, fibroblast activation, extracellular matrix deposition, and eventual fibrosis. The model progresses through defined stages, acute inflammation (days 1–7), fibrogenesis (days 7–28), and in most cases, spontaneous resolution (days 42–63), making it suitable for understanding temporal aspects of fibrosis and repair, the cell populations involved, and the signaling mechanisms involved. Despite its advantages, the single-dose model lacks key features of human IPF, including persistent fibrosis, honeycomb cysts, and fibroblastic foci. Repetitive dosing and the use of aged mice have improved chronicity and recapitulation of progressive disease and observation of the expansion of aberrant epithelial cell populations in simple cyst structures. This review discusses route-specific effects, strain and sex susceptibilities, and the growing role of microbiome and genetic background in influencing fibrosis outcomes. It also highlights cellular responses across epithelial cell populations, fibroblasts, endothelial cells, and immune cell populations. Although limitations exist in this model—such as reversibility and incomplete modeling of human pathology—bleomycin remains invaluable for mechanistic studies and preclinical drug screening. Importantly, all FDA-approved antifibrotic drugs demonstrated efficacy in bleomycin models prior to clinical success. The review advocates for careful model selection, incorporation of persistent fibrosis models, and parallel use of human-relevant systems to enhance translational relevance in pulmonary fibrosis research.

Keywords mouse model - pulmonary fibrosis - bleomycin Publication History

Article published online:
13 August 2025

© 2025. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
References 1 Allawzi A, Elajaili H, Redente EF, Nozik-Grayck E. Oxidative toxicology of bleomycin: role of the extracellular redox environment. Curr Opin Toxicol 2019; 13: 68-73 2 Meadors M, Floyd J, Perry MC. Pulmonary toxicity of chemotherapy. Semin Oncol 2006; 33 (01) 98-105 3 Jenkins RG, Moore BB, Chambers RC. et al; ATS Assembly on Respiratory Cell and Molecular Biology. An official American Thoracic Society workshop report: use of animal models for the preclinical assessment of potential therapies for pulmonary fibrosis. Am J Respir Cell Mol Biol 2017; 56 (05) 667-679 4 Moeller A, Ask K, Warburton D, Gauldie J, Kolb M. The bleomycin animal model: a useful tool to investigate treatment options for idiopathic pulmonary fibrosis?. Int J Biochem Cell Biol 2008; 40 (03) 362-382 5 Liu T, De Los Santos FG, Phan SH. The bleomycin model of pulmonary fibrosis. Methods Mol Biol 2017; 1627: 27-42 6 B Moore B, Lawson WE, Oury TD, Sisson TH, Raghavendran K, Hogaboam CM. Animal models of fibrotic lung disease. Am J Respir Cell Mol Biol 2013; 49 (02) 167-179 7 Kolb P, Upagupta C, Vierhout M. et al. The importance of interventional timing in the bleomycin model of pulmonary fibrosis. Eur Respir J 2020; 55 (06) 1901105 8 Adamson IY, Bowden DH. The pathogenesis of bleomycin-induced pulmonary fibrosis in mice. Am J Pathol 1974; 77 (02) 185-197 9 Jones AW, Reeve NL. Ultrastructural study of bleomycin-induced pulmonary changes in mice. J Pathol 1978; 124 (04) 227-233 10 Adamson IY. Pulmonary toxicity of bleomycin. Environ Health Perspect 1976; 16: 119-126 11 Redente EF, Keith RC, Janssen W. et al. Tumor necrosis factor-α accelerates the resolution of established pulmonary fibrosis in mice by targeting profibrotic lung macrophages. Am J Respir Cell Mol Biol 2014; 50 (04) 825-837 12 Bordag N, Biasin V, Schnoegl D. et al. Machine learning analysis of the bleomycin mouse model reveals the compartmental and temporal inflammatory pulmonary fingerprint. iScience 2020; 23 (12) 101819 13 Izbicki G, Segel MJ, Christensen TG, Conner MW, Breuer R. Time course of bleomycin-induced lung fibrosis. Int J Exp Pathol 2002; 83 (03) 111-119 14 Redente EF, Chakraborty S, Sajuthi S. et al. Loss of Fas signaling in fibroblasts impairs homeostatic fibrosis resolution and promotes persistent pulmonary fibrosis. JCI Insight 2020; 6 (01) e141618 15 Tighe RM, Redente EF, Yu YR. et al. Improving the quality and reproducibility of flow cytometry in the lung. An official American Thoracic Society workshop report. Am J Respir Cell Mol Biol 2019; 61 (02) 150-161 16 Misharin AV, Morales-Nebreda L, Reyfman PA. et al. Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. J Exp Med 2017; 214 (08) 2387-2404 17 McCubbrey AL, Barthel L, Mohning MP. et al. Deletion of c-FLIP from CD11bhi macrophages prevents development of bleomycin-induced lung fibrosis. Am J Respir Cell Mol Biol 2018; 58 (01) 66-78 18 King EM, Zhao Y, Moore CM. et al. Gpnmb and Spp1 mark a conserved macrophage injury response masking fibrosis-specific programming in the lung. JCI Insight 2024; 9 (24) e182700 19 Aran D, Looney AP, Liu L. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol 2019; 20 (02) 163-172 20 Watanabe S, Alexander M, Misharin AV, Budinger GRS. The role of macrophages in the resolution of inflammation. J Clin Invest 2019; 129 (07) 2619-2628 21 Gibbons MA, MacKinnon AC, Ramachandran P. et al. Ly6Chi monocytes direct alternatively activated profibrotic macrophage regulation of lung fibrosis. Am J Respir Crit Care Med 2011; 184 (05) 569-581 22 Li R, Bernau K, Sandbo N, Gu J, Preissl S, Sun X. Pdgfra marks a cellular lineage with distinct contributions to myofibroblasts in lung maturation and injury response. eLife 2018; 7: e36865 23 Brass DM, Yang IV, Kennedy MP. et al. Fibroproliferation in LPS-induced airway remodeling and bleomycin-induced fibrosis share common patterns of gene expression. Immunogenetics 2008; 60 (07) 353-369 24 Xie T, Wang Y, Deng N. et al. Single-cell deconvolution of fibroblast heterogeneity in mouse pulmonary fibrosis. Cell Rep 2018; 22 (13) 3625-3640 25 Tsukui T, Wolters PJ, Sheppard D. Alveolar fibroblast lineage orchestrates lung inflammation and fibrosis. Nature 2024; 631 (8021) 627-634 26 Tsukui T, Sun KH, Wetter JB. et al. Collagen-producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis. Nat Commun 2020; 11 (01) 1920 27 Yunt ZX, Mohning MP, Barthel L. et al. Kinetics of the angiogenic response in lung endothelium following acute inflammatory injury with bleomycin. Exp Lung Res 2014; 40 (08) 415-425 28 Gilhodes JC, Julé Y, Kreuz S, Stierstorfer B, Stiller D, Wollin L. Quantification of pulmonary fibrosis in a bleomycin mouse model using automated histological image analysis. PLoS One 2017; 12 (01) e0170561 29 Dobrinskikh E, Estrella AM, Hennessy CE. et al. Genes, other than Muc5b, play a role in bleomycin-induced lung fibrosis. Am J Physiol Lung Cell Mol Physiol 2021; 321 (02) L440-L450 30 Redente EF, Kopf KW, Bahadur AN, Robichaud A, Lundblad LK, McDonald LT. Application-specific approaches to MicroCT for evaluation of mouse models of pulmonary disease. PLoS One 2023; 18 (02) e0281452 31 El Agha E, Moiseenko A, Kheirollahi V. et al. Two-way conversion between lipogenic and myogenic fibroblastic phenotypes marks the progression and resolution of lung fibrosis. Cell Stem Cell 2017; 20 (04) 571 32 Hecker L, Logsdon NJ, Kurundkar D. et al. Reversal of persistent fibrosis in aging by targeting Nox4-Nrf2 redox imbalance. Sci Transl Med 2014; 6 (231) 231ra47 33 Redente EF, Jacobsen KM, Solomon JJ. et al. Age and sex dimorphisms contribute to the severity of bleomycin-induced lung injury and fibrosis. Am J Physiol Lung Cell Mol Physiol 2011; 301 (04) L510-L518 34 Stout-Delgado HW, Cho SJ, Chu SG. et al. Age-dependent susceptibility to pulmonary fibrosis is associated with NLRP3 inflammasome activation. Am J Respir Cell Mol Biol 2016; 55 (02) 252-263 35 Xu J, Gonzalez ET, Iyer SS. et al. Use of senescence-accelerated mouse model in bleomycin-induced lung injury suggests that bone marrow-derived cells can alter the outcome of lung injury in aged mice. J Gerontol A Biol Sci Med Sci 2009; 64 (07) 731-739 36 Podolsky MJ, Yang CD, Valenzuela CL. et al. Age-dependent regulation of cell-mediated collagen turnover. JCI Insight 2020; 5 (10) e137519 37 Weckerle J, Mayr CH, Fundel-Clemens K. et al. Transcriptomic and proteomic changes driving pulmonary fibrosis resolution in young and old mice. Am J Respir Cell Mol Biol 2023; 69 (04) 422-440 38 Degryse AL, Tanjore H, Xu XC. et al. Repetitive intratracheal bleomycin models several features of idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2010; 299 (04) L442-L452 39 Redente EF, Black BP, Backos DS. et al. Persistent, progressive pulmonary fibrosis and epithelial remodeling in mice. Am J Respir Cell Mol Biol 2021; 64 (06) 669-676 40 Cooley JC, Javkhlan N, Wilson JA. et al. Inhibition of antiapoptotic BCL-2 proteins with ABT-263 induces fibroblast apoptosis, reversing persistent pulmonary fibrosis. JCI Insight 2023; 8 (03) e163762 41 Gul A, Yang F, Xie C. et al. Pulmonary fibrosis model of mice induced by different administration methods of bleomycin. BMC Pulm Med 2023; 23 (01) 91 42 Chua F, Gauldie J, Laurent GJ. Pulmonary fibrosis: searching for model answers. Am J Respir Cell Mol Biol 2005; 33 (01) 9-13 43 Walters DM, Kleeberger SR. Mouse models of bleomycin-induced pulmonary fibrosis. Curr Protocols Pharmacol 2008; Chapter 5: Unit 5.46 44 Seo Y, Qiu L, Magnen M. et al. Optimizing anesthesia and delivery approaches for dosing into lungs of mice. Am J Physiol Lung Cell Mol Physiol 2023; 325 (02) L262-L269 45 Nieuw Amerongen AV, Oderkerk CH, Veerman EC. Influence of phytate on the adsorption of human salivary mucins onto hydroxyapatite. J Biol Buccale 1988; 16 (04) 203-208 46 Egger C, Cannet C, Gérard C. et al. Administration of bleomycin via the oropharyngeal aspiration route leads to sustained lung fibrosis in mice and rats as quantified by UTE-MRI and histology. PLoS One 2013; 8 (05) e63432 47 Cao Z, Lis R, Ginsberg M. et al. Targeting of the pulmonary capillary vascular niche promotes lung alveolar repair and ameliorates fibrosis. Nat Med 2016; 22 (02) 154-162 48 Headley L, Bi W, Wilson C. et al. Low-dose administration of bleomycin leads to early alterations in lung mechanics. Exp Physiol 2018; 103 (12) 1692-1703 49 Lazo JS, Humphreys CJ. Lack of metabolism as the biochemical basis of bleomycin-induced pulmonary toxicity. Proc Natl Acad Sci U S A 1983; 80 (10) 3064-3068 50 Liang M, Lv J, Zou L. et al. A modified murine model of systemic sclerosis: bleomycin given by pump infusion induced skin and pulmonary inflammation and fibrosis. Lab Invest 2015; 95 (03) 342-350 51 Harrison Jr JH, Lazo JS. High dose continuous infusion of bleomycin in mice: a new model for drug-induced pulmonary fibrosis. J Pharmacol Exp Ther 1987; 243 (03) 1185-1194 52 Shea BS, Brooks SF, Fontaine BA, Chun J, Luster AD, Tager AM. Prolonged exposure to sphingosine 1-phosphate receptor-1 agonists exacerbates vascular leak, fibrosis, and mortality after lung injury. Am J Respir Cell Mol Biol 2010; 43 (06) 662-673 53 Shea BS, Probst CK, Brazee PL. et al. Uncoupling of the profibrotic and hemostatic effects of thrombin in lung fibrosis. JCI Insight 2017; 2 (09) e86608 54 Gendron DR, Lemay AM, Lecours PB. et al. FTY720 promotes pulmonary fibrosis when administered during the remodelling phase following a bleomycin-induced lung injury. Pulm Pharmacol Ther 2017; 44: 50-56 55 Grandi A, Ferrini E, Zoboli M. et al. A mouse model of progressive lung fibrosis with cutaneous involvement induced by a combination of oropharyngeal and osmotic minipump bleomycin delivery. Am J Physiol Lung Cell Mol Physiol 2024; 326 (06) L736-L753 56 Schrier DJ, Kunkel RG, Phan SH. The role of strain variation in murine bleomycin-induced pulmonary fibrosis. Am Rev Respir Dis 1983; 127 (01) 63-66 57 Voltz JW, Card JW, Carey MA. et al. Male sex hormones exacerbate lung function impairment after bleomycin-induced pulmonary fibrosis. Am J Respir Cell Mol Biol 2008; 39 (01) 45-52 58 Lamichhane R, Patial S, Saini Y. Higher susceptibility of males to bleomycin-induced pulmonary inflammation is associated with sex-specific transcriptomic differences in myeloid cells. Toxicol Appl Pharmacol 2022; 454: 116228 59 Raslan AA, Pham TX, Lee J. et al. Lung injury-induced activated endothelial cell states persist in aging-associated progressive fibrosis. Nat Commun 2024; 15 (01) 5449 60 Klee S, Picart-Armada S, Wenger K. et al. Transcriptomic and proteomic profiling of young and old mice in the bleomycin model reveals high similarity. Am J Physiol Lung Cell Mol Physiol 2023; 324 (03) L245-L258 61 Chioma OS, Mallott EK, Chapman A. et al. Gut microbiota modulates lung fibrosis severity following acute lung injury in mice. Commun Biol 2022; 5 (01) 1401 62 Yoon YM, Hrusch CL, Fei N. et al. Gut microbiota modulates bleomycin-induced acute lung injury response in mice. Respir Res 2022; 23 (01) 337 63 O'Dwyer DN, Ashley SL, Gurczynski SJ. et al. Lung microbiota contribute to pulmonary inflammation and disease progression in pulmonary fibrosis. Am J Respir Crit Care Med 2019; 199 (09) 1127-1138 64 Yang D, Chen X, Wang J. et al. Dysregulated lung commensal bacteria drive interleukin-17B production to promote pulmonary fibrosis through their outer membrane vesicles. Immunity 2019; 50 (03) 692-706.e7 65 Wuyts WA, Willems S, Vos R. et al. Azithromycin reduces pulmonary fibrosis in a bleomycin mouse model. Exp Lung Res 2010; 36 (10) 602-614 66 Rudders RA, Hensley GT. Bleomycin pulmonary toxicity. Chest 1973; 63 (04) 627-628 67 Usuki J, Fukuda Y. Evolution of three patterns of intra-alveolar fibrosis produced by bleomycin in rats. Pathol Int 1995; 45 (08) 552-564 68 Munger JS, Huang X, Kawakatsu H. et al. The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 1999; 96 (03) 319-328 69 Bauer Y, Tedrow J, de Bernard S. et al. A novel genomic signature with translational significance for human idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol 2015; 52 (02) 217-231 70 Moore BB, Hogaboam CM. Murine models of pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2008; 294 (02) L152-L160 71 Borzone G, Moreno R, Urrea R, Meneses M, Oyarzún M, Lisboa C. Bleomycin-induced chronic lung damage does not resemble human idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2001; 163 (07) 1648-1653 72 Limjunyawong N, Mitzner W, Horton MR. A mouse model of chronic idiopathic pulmonary fibrosis. Physiol Rep 2014; 2 (02) e00249 73 Raghu G, Anstrom KJ, King Jr TE, Lasky JA, Martinez FJ. Idiopathic Pulmonary Fibrosis Clinical Research Network. Prednisone, azathioprine, and N-acetylcysteine for pulmonary fibrosis. N Engl J Med 2012; 366 (21) 1968-1977 74 Song X, Yu W, Guo F. Pirfenidone suppresses bleomycin-induced pulmonary fibrosis and periostin expression in rats. Exp Ther Med 2018; 16 (03) 1800-1806 75 King Jr TE, Bradford WZ, Castro-Bernardini S. et al; ASCEND Study Group. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med 2014; 370 (22) 2083-2092 76 Richeldi L, du Bois RM, Raghu G. et al; INPULSIS Trial Investigators. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med 2014; 370 (22) 2071-2082 77 Kathiriya JJ, Wang C, Zhou M. et al. Human alveolar type 2 epithelium transdifferentiates into metaplastic KRT5+ basal cells. Nat Cell Biol 2022; 24 (01) 10-23 78 Xu Y, Mizuno T, Sridharan A. et al. Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis. JCI Insight 2016; 1 (20) e90558 79 Parimon T, Chen P, Stripp BR. et al. Senescence of alveolar epithelial progenitor cells: a critical driver of lung fibrosis. Am J Physiol Cell Physiol 2023; 325 (02) C483-C495 80 Desai TJ, Brownfield DG, Krasnow MA. Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature 2014; 507 (7491) 190-194 81 Miyata R, Hasegawa K, Menju T. et al. Lung fibrogenic microenvironment in mouse reconstitutes human alveolar structure and lung tumor. iScience 2022; 25 (09) 104912 82 Wang F, Ting C, Riemondy KA. et al. Regulation of epithelial transitional states in murine and human pulmonary fibrosis. J Clin Invest 2023; 133 (22) e165612 83 Chapman HA. Epithelial-mesenchymal interactions in pulmonary fibrosis. Annu Rev Physiol 2011; 73: 413-435 84 Thamsen M, Ghosh R, Auyeung VC. et al. Small molecule inhibition of IRE1α kinase/RNase has anti-fibrotic effects in the lung. PLoS One 2019; 14 (01) e0209824 85 Auyeung VC, Downey MS, Thamsen M. et al. IRE1α drives lung epithelial progenitor dysfunction to establish a niche for pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2022; 322 (04) L564-L580 86 Katzen J, Wagner BD, Venosa A. et al. An SFTPC BRICHOS mutant links epithelial ER stress and spontaneous lung fibrosis. JCI Insight 2019; 4 (06) e126125 87 Zhao M, Wang L, Wang M. et al. Targeting fibrosis, mechanisms and clinical trials. Signal Transduct Target Ther 2022; 7 (01) 206 88 Sisson TH, Mendez M, Choi K. et al. Targeted injury of type II alveolar epithelial cells induces pulmonary fibrosis. Am J Respir Crit Care Med 2010; 181 (03) 254-263 89 McCall AS, Gutor S, Tanjore H. et al. Hypoxia-inducible factor 2 regulates alveolar regeneration after repetitive injury in three-dimensional cellular and in vivo models. Sci Transl Med 2025; 17 (780) eadk8623 90 Garcia O, Hiatt MJ, Lundin A. et al. Targeted type 2 alveolar cell depletion. A dynamic functional model for lung injury repair. Am J Respir Cell Mol Biol 2016; 54 (03) 319-330 91 Nureki SI, Tomer Y, Venosa A. et al. Expression of mutant Sftpc in murine alveolar epithelia drives spontaneous lung fibrosis. J Clin Invest 2018; 128 (09) 4008-4024 92 Povedano JM, Martinez P, Flores JM, Mulero F, Blasco MA. Mice with pulmonary fibrosis driven by telomere dysfunction. Cell Rep 2015; 12 (02) 286-299 93 Mei Q, Liu Z, Zuo H, Yang Z, Qu J. Idiopathic pulmonary fibrosis: an update on pathogenesis. Front Pharmacol 2022; 12: 797292 94 Li X, Zhang H, Soledad-Conrad V, Zhuang J, Uhal BD. Bleomycin-induced apoptosis of alveolar epithelial cells requires angiotensin synthesis de novo. Am J Physiol Lung Cell Mol Physiol 2003; 284 (03) L501-L507 95 Drakopanagiotakis F, Xifteri A, Polychronopoulos V, Bouros D. Apoptosis in lung injury and fibrosis. Eur Respir J 2008; 32 (06) 1631-1638 96 Lawson WE, Polosukhin VV, Stathopoulos GT. et al. Increased and prolonged pulmonary fibrosis in surfactant protein C-deficient mice following intratracheal bleomycin. Am J Pathol 2005; 167 (05) 1267-1277 97 Aoshiba K, Tsuji T, Nagai A. Bleomycin induces cellular senescence in alveolar epithelial cells. Eur Respir J 2003; 22 (03) 436-443 98 Hewlett JC, Kropski JA, Blackwell TS. Idiopathic pulmonary fibrosis: epithelial-mesenchymal interactions and emerging therapeutic targets. Matrix Biol 2018; 71-72: 112-127 99 Mercer PF, Johns RH, Scotton CJ. et al. Pulmonary epithelium is a prominent source of proteinase-activated receptor-1-inducible CCL2 in pulmonary fibrosis. Am J Respir Crit Care Med 2009; 179 (05) 414-425 100 Yamada Z, Nishio J, Motomura K. et al. Senescence of alveolar epithelial cells impacts initiation and chronic phases of murine fibrosing interstitial lung disease. Front Immunol 2022; 13: 935114 101 Kadur Lakshminarasimha Murthy P, Sontake V, Tata A. et al. Human distal lung maps and lineage hierarchies reveal a bipotent progenitor. Nature 2022; 604 (7904) 111-119 102 Tashiro J, Rubio GA, Limper AH. et al. Exploring animal models that resemble idiopathic pulmonary fibrosis. Front Med (Lausanne) 2017; 4: 118 103 Vats A, Chaturvedi P. The regenerative power of stem cells: treating bleomycin-induced lung fibrosis. Stem Cells Cloning 2023; 16: 43-59 104 Habermann AC, Gutierrez AJ, Bui LT. et al. Single-cell RNA sequencing reveals profibrotic roles of distinct epithelial and mesenchymal lineages in pulmonary fibrosis. Sci Adv 2020; 6 (28) eaba1972 105 Fang Y, Chung SSW, Xu L. et al. RUNX2 promotes fibrosis via an alveolar-to-pathological fibroblast transition. Nature 2025; 640 (8057) 221-230 106 Li Q, Wang Y, Ji L. et al. Cellular and molecular mechanisms of fibrosis and resolution in bleomycin-induced pulmonary fibrosis mouse model revealed by spatial transcriptome analysis. Heliyon 2023; 9 (12) e22461 107 Lingampally A, Truchi M, Mauduit O. et al. Evidence for a lipofibroblast-to-Cthrc1 + myofibroblast reversible switch during the development and resolution of lung fibrosis in young mice. Eur Respir J 2025; 65 (02) 2300482 108 Tan Q, Link PA, Meridew JA. et al. Spontaneous lung fibrosis resolution reveals novel antifibrotic regulators. Am J Respir Cell Mol Biol 2021; 64 (04) 453-464 109 Frangogiannis NG. Fibroblast-extracellular matrix interactions in tissue fibrosis. Curr Pathobiol Rep 2016; 4 (01) 11-18 110 Kendall RT, Feghali-Bostwick CA. Fibroblasts in fibrosis: novel roles and mediators. Front Pharmacol 2014; 5: 123 111 Tan C, Jiang M, Wong SS. et al. Soluble Thy-1 reverses lung fibrosis via its integrin-binding motif. JCI Insight 2019; 4 (21) e131152 112 Zhou Y, Huang X, Hecker L. et al. Inhibition of mechanosensitive signaling in myofibroblasts ameliorates experimental pulmonary fibrosis. J Clin Invest 2013; 123 (03) 1096-1108 113 Hagimoto N, Kuwano K, Inoshima I. et al. TGF-beta 1 as an enhancer of Fas-mediated apoptosis of lung epithelial cells. J Immunol 2002; 168 (12) 6470-6478 114 Schiller HB, Fernandez IE, Burgstaller G. et al. Time- and compartment-resolved proteome profiling of the extracellular niche in lung injury and repair. Mol Syst Biol 2015; 11 (07) 819 115 Hinz B, Lagares D. Evasion of apoptosis by myofibroblasts: a hallmark of fibrotic diseases. Nat Rev Rheumatol 2020; 16 (01) 11-31 116 Liu X, Wong SS, Taype CA. et al. Thy-1 interaction with Fas in lipid rafts regulates fibroblast apoptosis and lung injury resolution. Lab Invest 2017; 97 (03) 256-267 117 Schafer MJ, White TA, Iijima K. et al. Cellular senescence mediates fibrotic pulmonary disease. Nat Commun 2017; 8: 14532 118 Kato K, Logsdon NJ, Shin YJ. et al. Impaired myofibroblast dedifferentiation contributes to nonresolving fibrosis in aging. Am J Respir Cell Mol Biol 2020; 62 (05) 633-644 119 Atabai K, Yang CD, Podolsky MJ. You say you want a resolution (of fibrosis). Am J Respir Cell Mol Biol 2020; 63 (04) 424-435 120 Lingampally A, Truchi M, Shi X. et al. Unraveling alveolar fibroblast and activated myofibroblast heterogeneity and differentiation trajectories during lung fibrosis development and resolution in young and old mice. Aging Cell 2025; 24 (05) e14503 121 Kato S, Inui N, Hakamata A. et al. Changes in pulmonary endothelial cell properties during bleomycin-induced pulmonary fibrosis. Respir Res 2018; 19 (01) 127 122 Strunz M, Simon LM, Ansari M. et al. Alveolar regeneration through a Krt8+ transitional stem cell state that persists in human lung fibrosis. Nat Commun 2020; 11 (01) 3559 123 Murray LA, Habiel DM, Hohmann M. et al. Antifibrotic role of vascular endothelial growth factor in pulmonary fibrosis. JCI Insight 2017; 2 (16) e92192 124 Baluk P, Naikawadi RP, Kim S. et al. Lymphatic proliferation ameliorates pulmonary fibrosis after lung injury. Am J Pathol 2020; 190 (12) 2355-2375 125 Caporarello N, Meridew JA, Aravamudhan A. et al. Vascular dysfunction in aged mice contributes to persistent lung fibrosis. Aging Cell 2020; 19 (08) e13196 126 Caporarello N, Lee J, Pham TX. et al. Dysfunctional ERG signaling drives pulmonary vascular aging and persistent fibrosis. Nat Commun 2022; 13 (01) 4170 127 Tager AM, LaCamera P, Shea BS. et al. The lysophosphatidic acid receptor LPA1 links pulmonary fibrosis to lung injury by mediating fibroblast recruitment and vascular leak. Nat Med 2008; 14 (01) 45-54 128 Knipe RS, Spinney JJ, Abe EA. et al. Endothelial-specific loss of sphingosine-1-phosphate receptor 1 increases vascular permeability and exacerbates bleomycin-induced pulmonary fibrosis. Am J Respir Cell Mol Biol 2022; 66 (01) 38-52 129 Adams TS, Schupp JC, Poli S. et al. Single-cell RNA-seq reveals ectopic and aberrant lung-resident cell populations in idiopathic pulmonary fibrosis. Sci Adv 2020; 6 (28) eaba1983 130 Ji WJ, Ma YQ, Zhou X. et al. Temporal and spatial characterization of mononuclear phagocytes in circulating, lung alveolar and interstitial compartments in a mouse model of bleomycin-induced pulmonary injury. J Immunol Methods 2014; 403 (1-2): 7-16 131 Gasse P, Mary C, Guenon I. et al. IL-1R1/MyD88 signaling and the inflammasome are essential in pulmonary inflammation and fibrosis in mice. J Clin Invest 2007; 117 (12) 3786-3799 132 Gasse P, Riteau N, Charron S. et al. Uric acid is a danger signal activating NALP3 inflammasome in lung injury inflammation and fibrosis. Am J Respir Crit Care Med 2009; 179 (10) 903-913 133 Griffith JW, Faustino LD, Cottrell VI. et al. Regulatory T cell-derived IL-1Ra suppresses the innate response to respiratory viral infection. Nat Immunol 2023; 24 (12) 2091-2107 134 Cohen ML, Brumwell AN, Ho TC. et al. A fibroblast-dependent TGF-β1/sFRP2 noncanonical Wnt signaling axis promotes epithelial metaplasia in idiopathic pulmonary fibrosis. J Clin Invest 2024; 134 (18) e174598 135 Kinder BW, Brown KK, Schwarz MI, Ix JH, Kervitsky A, King Jr TE. Baseline BAL neutrophilia predicts early mortality in idiopathic pulmonary fibrosis. Chest 2008; 133 (01) 226-232 136 Moore BB, Paine III R, Christensen PJ. et al. Protection from pulmonary fibrosis in the absence of CCR2 signaling. J Immunol 2001; 167 (08) 4368-4377

Comments (0)

No login
gif