Do the receptive fields in the primary visual cortex span a variability over the degree of elongation of the receptive fields?

Abballe, L., & Asari, H. (2022). Natural image statistics for mouse vision. PLoS ONE,17(1), Article e0262763.

Adelson, E., & Bergen, J. (1985). Spatiotemporal energy models for the perception of motion. Journal of Optical Society of America, A, 2, 284–299.

Article  CAS  Google Scholar 

Albright, T. D. (1984). Direction and orientation selectivity of neurons in visual area MT of the macaque. Journal of Neurophysiology, 52(6), 1106–1130.

Article  CAS  PubMed  Google Scholar 

Almasi, A., Meffin, H., Cloherty, S. L., Wong, Y., Yunzab, M., & Ibbotson, M. R. (2020). Mechanisms of feature selectivity and invariance in primary visual cortex. Cerebral Cortex, 30(9), 5067–5087.

Article  PubMed  Google Scholar 

Baspinar, E., Citti, G., & Sarti, A. (2018). A geometric model of multi-scale orientation preference maps via Gabor functions. Journal of Mathematical Imaging and Vision, 60, 900–912.

Article  Google Scholar 

Berkes, P., & Wiskott, L. (2005). Slow feature analysis yields a rich repertoire of complex cell properties. Journal of Vision, 5(6), 579–602.

Article  PubMed  Google Scholar 

Blasdel, G. G. (1992). Orientation selectivity, preference and continuity in monkey striate cortex. Journal of Neuroscience, 12(8), 3139–3161.

Article  CAS  PubMed  Google Scholar 

Bonhoeffer, T., & Grinvald, A. (1991). Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns. Nature, 353, 429–431.

Article  CAS  PubMed  Google Scholar 

Bracewell, R. N. (1999). The Fourier Transform and its Applications. McGraw-Hill, New York, 3rd edition.

Carandini, M. (2006). What simple and complex cells compute. The Journal of Physiology, 577(2), 463–466.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carandini, M., & Ringach, D. L. (1997). Predictions of a recurrent model of orientation selectivity. Vision Research, 37(21), 3061–3071.

Article  CAS  PubMed  Google Scholar 

Cogno, S. G., & Mato, G. (2015). The effect of synaptic plasticity on orientation selectivity in a balanced model of primary visual cortex. Frontiers in Neural Circuits, 9, 42.

Google Scholar 

Conway, B. R., & Livingstone, M. S. (2006). Spatial and temporal properties of cone signals in alert macaque primary visual cortex. Journal of Neuroscience, 26(42), 10826–10846.

Article  CAS  PubMed  Google Scholar 

DeAngelis, G. C., Anzai, A. (2004). A modern view of the classical receptive field: Linear and non-linear spatio-temporal processing by V1 neurons. In: Chalupa, L. M., Werner, J. S., editors, The Visual Neurosciences, volume 1, pp. 704–719. MIT Press,

DeAngelis, G. C., Ohzawa, I., & Freeman, R. D. (1995). Receptive field dynamics in the central visual pathways. Trends in Neuroscience, 18(10), 451–457.

Article  CAS  Google Scholar 

De, A., & Horwitz, G. D. (2021). Spatial receptive field structure of double-opponent cells in macaque V1. Journal of Neurophysiology, 125(3), 843–857.

Article  PubMed  PubMed Central  Google Scholar 

DiCarlo, J. J., Zoccolan, D., & Rust, N. C. (2012). How does the brain solve visual object recognition? Neuron, 73(3), 415–434.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Einhäuser, W., Kayser, C., König, P., & Körding, K. P. (2002). Learning the invariance properties of complex cells from their responses to natural stimuli. European Journal of Neuroscience, 15(3), 475–486.

Article  PubMed  Google Scholar 

Emerson, R. C., Citron, M. C., Vaughn, W. J., & Klein, S. A. (1987). Nonlinear directionally selective subunits in complex cells of cat striate cortex. Journal of Neurophysiology, 58(1), 33–65.

Article  CAS  PubMed  Google Scholar 

Fang, C., Cai, X., & Lu, H. D. (2022). Orientation anisotropies in macaque visual areas. Proceedings of the National Academy of Sciences,119(15), Article e2113407119.

Ferster, D., & Miller, K. D. (2000). Neural mechanisms of orientation selectivity in the visual cortex. Annual Review of Neuroscience, 23(1), 441–471.

Article  CAS  PubMed  Google Scholar 

Franciosini, A., Boutin, V., Perrinet, L. (2019). Modelling complex cells of early visual cortex using predictive coding. In: Proc. 28th Annual Computational Neuroscience Meeting, Available from https://laurentperrinet.github.io/publication/franciosini-perrinet-19-cns/franciosini-perrinet-19-cns.pdf.

Georgeson, M. A., May, K. A., Freeman, T. C. A., Hesse, G. S. (2007). From filters to features: Scale-space analysis of edge and blur coding in human vision. Journal of Vision, 7 (13), 7.1–21.

Ghodrati, M., Khaligh-Razavi, S.-M., & Lehky, S. R. (2017). Towards building a more complex view of the lateral geniculate nucleus: Recent advances in understanding its role. Progress in Neurobiology, 156, 214–255.

Article  PubMed  Google Scholar 

Goris, R. L. T., Simoncelli, E. P., & Movshon, J. A. (2015). Origin and function of tuning diversity in Macaque visual cortex. Neuron, 88(4), 819–831.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hansard, M., & Horaud, R. (2011). A differential model of the complex cell. Neural Computation, 23(9), 2324–2357.

Article  PubMed  Google Scholar 

Hansel, D., & van Vreeswijk, C. (2012). The mechanism of orientation selectivity in primary visual cortex without a functional map. Journal of Neuroscience, 32(12), 4049–4064.

Article  CAS  PubMed  Google Scholar 

Hansen, T., Neumann, H. (2008). A recurrent model of contour integration in primary visual cortex. Journal of Vision, 8 (8), 8.1–25.

Heeger, D. J. (1992). Normalization of cell responses in cat striate cortex. Visual Neuroscience, 9, 181–197.

Article  CAS  PubMed  Google Scholar 

Hesse, G. S., & Georgeson, M. A. (2005). Edges and bars: where do people see features in 1-D images? Vision Research, 45(4), 507–525.

Article  PubMed  Google Scholar 

Hubel, D. H., Wiesel, T. N. (2005). Brain and Visual Perception: The Story of a 25-Year Collaboration. Oxford University Press.

Hubel, D. H., & Wiesel, T. N. (1959). Receptive fields of single neurones in the cat’s striate cortex. J Physiol, 147, 226–238.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol, 160, 106–154.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey striate cortex. The Journal of Physiology, 195(1), 215–243.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jansen, M., Jin, J., Li, X., Lashgari, R., Kremkow, J., Bereshpolova, Y., Swadlow, H. A., Zaidi, Q., & Alonso, J.-M. (2019). Cortical balance between ON and OFF visual responses is modulated by the spatial properties of the visual stimulus. Cerebral Cortex, 29(1), 336–355.

Article  PubMed  Google Scholar 

Johnson, E. N., Hawken, M. J., & Shapley, R. (2008). The orientation selectivity of color-responsive neurons in Macaque V1. The Journal of Neuroscience, 28(32), 8096–8106.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jones, J., & Palmer, L. (1987). The two-dimensional spatial structure of simple receptive fields in cat striate cortex. Journal of Neurophysiology, 58, 1187–1211.

Article  CAS  PubMed  Google Scholar 

Jones, J., & Palmer, L. (1987). An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. Journal of Neurophysiology, 58, 1233–1258.

Article  CAS  PubMed  Google Scholar 

Jung, Y. J., Almasi, A., Sun, S. H., Yunzab, M., Cloherty, S. L., Bauquier, S. H., Renfree, M., Meffin, H., Ibbotson, M. R. (2022). Orientation pinwheels in primary visual cortex of a highly visual marsupial. Science Advances, 8 (39): eabn0954.

King, P. D., Zylberberg, J., & DeWeese, M. R. (2013). Inhibitory interneurons decorrelate excitatory cells to drive sparse code formation in a spiking model of V1. Journal of Neuroscience, 33(13), 5475–5485.

Article  CAS  PubMed 

Comments (0)

No login
gif