Abballe, L., & Asari, H. (2022). Natural image statistics for mouse vision. PLoS ONE,17(1), Article e0262763.
Adelson, E., & Bergen, J. (1985). Spatiotemporal energy models for the perception of motion. Journal of Optical Society of America, A, 2, 284–299.
Albright, T. D. (1984). Direction and orientation selectivity of neurons in visual area MT of the macaque. Journal of Neurophysiology, 52(6), 1106–1130.
Article CAS PubMed Google Scholar
Almasi, A., Meffin, H., Cloherty, S. L., Wong, Y., Yunzab, M., & Ibbotson, M. R. (2020). Mechanisms of feature selectivity and invariance in primary visual cortex. Cerebral Cortex, 30(9), 5067–5087.
Baspinar, E., Citti, G., & Sarti, A. (2018). A geometric model of multi-scale orientation preference maps via Gabor functions. Journal of Mathematical Imaging and Vision, 60, 900–912.
Berkes, P., & Wiskott, L. (2005). Slow feature analysis yields a rich repertoire of complex cell properties. Journal of Vision, 5(6), 579–602.
Blasdel, G. G. (1992). Orientation selectivity, preference and continuity in monkey striate cortex. Journal of Neuroscience, 12(8), 3139–3161.
Article CAS PubMed Google Scholar
Bonhoeffer, T., & Grinvald, A. (1991). Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns. Nature, 353, 429–431.
Article CAS PubMed Google Scholar
Bracewell, R. N. (1999). The Fourier Transform and its Applications. McGraw-Hill, New York, 3rd edition.
Carandini, M. (2006). What simple and complex cells compute. The Journal of Physiology, 577(2), 463–466.
Article CAS PubMed PubMed Central Google Scholar
Carandini, M., & Ringach, D. L. (1997). Predictions of a recurrent model of orientation selectivity. Vision Research, 37(21), 3061–3071.
Article CAS PubMed Google Scholar
Cogno, S. G., & Mato, G. (2015). The effect of synaptic plasticity on orientation selectivity in a balanced model of primary visual cortex. Frontiers in Neural Circuits, 9, 42.
Conway, B. R., & Livingstone, M. S. (2006). Spatial and temporal properties of cone signals in alert macaque primary visual cortex. Journal of Neuroscience, 26(42), 10826–10846.
Article CAS PubMed Google Scholar
DeAngelis, G. C., Anzai, A. (2004). A modern view of the classical receptive field: Linear and non-linear spatio-temporal processing by V1 neurons. In: Chalupa, L. M., Werner, J. S., editors, The Visual Neurosciences, volume 1, pp. 704–719. MIT Press,
DeAngelis, G. C., Ohzawa, I., & Freeman, R. D. (1995). Receptive field dynamics in the central visual pathways. Trends in Neuroscience, 18(10), 451–457.
De, A., & Horwitz, G. D. (2021). Spatial receptive field structure of double-opponent cells in macaque V1. Journal of Neurophysiology, 125(3), 843–857.
Article PubMed PubMed Central Google Scholar
DiCarlo, J. J., Zoccolan, D., & Rust, N. C. (2012). How does the brain solve visual object recognition? Neuron, 73(3), 415–434.
Article CAS PubMed PubMed Central Google Scholar
Einhäuser, W., Kayser, C., König, P., & Körding, K. P. (2002). Learning the invariance properties of complex cells from their responses to natural stimuli. European Journal of Neuroscience, 15(3), 475–486.
Emerson, R. C., Citron, M. C., Vaughn, W. J., & Klein, S. A. (1987). Nonlinear directionally selective subunits in complex cells of cat striate cortex. Journal of Neurophysiology, 58(1), 33–65.
Article CAS PubMed Google Scholar
Fang, C., Cai, X., & Lu, H. D. (2022). Orientation anisotropies in macaque visual areas. Proceedings of the National Academy of Sciences,119(15), Article e2113407119.
Ferster, D., & Miller, K. D. (2000). Neural mechanisms of orientation selectivity in the visual cortex. Annual Review of Neuroscience, 23(1), 441–471.
Article CAS PubMed Google Scholar
Franciosini, A., Boutin, V., Perrinet, L. (2019). Modelling complex cells of early visual cortex using predictive coding. In: Proc. 28th Annual Computational Neuroscience Meeting, Available from https://laurentperrinet.github.io/publication/franciosini-perrinet-19-cns/franciosini-perrinet-19-cns.pdf.
Georgeson, M. A., May, K. A., Freeman, T. C. A., Hesse, G. S. (2007). From filters to features: Scale-space analysis of edge and blur coding in human vision. Journal of Vision, 7 (13), 7.1–21.
Ghodrati, M., Khaligh-Razavi, S.-M., & Lehky, S. R. (2017). Towards building a more complex view of the lateral geniculate nucleus: Recent advances in understanding its role. Progress in Neurobiology, 156, 214–255.
Goris, R. L. T., Simoncelli, E. P., & Movshon, J. A. (2015). Origin and function of tuning diversity in Macaque visual cortex. Neuron, 88(4), 819–831.
Article CAS PubMed PubMed Central Google Scholar
Hansard, M., & Horaud, R. (2011). A differential model of the complex cell. Neural Computation, 23(9), 2324–2357.
Hansel, D., & van Vreeswijk, C. (2012). The mechanism of orientation selectivity in primary visual cortex without a functional map. Journal of Neuroscience, 32(12), 4049–4064.
Article CAS PubMed Google Scholar
Hansen, T., Neumann, H. (2008). A recurrent model of contour integration in primary visual cortex. Journal of Vision, 8 (8), 8.1–25.
Heeger, D. J. (1992). Normalization of cell responses in cat striate cortex. Visual Neuroscience, 9, 181–197.
Article CAS PubMed Google Scholar
Hesse, G. S., & Georgeson, M. A. (2005). Edges and bars: where do people see features in 1-D images? Vision Research, 45(4), 507–525.
Hubel, D. H., Wiesel, T. N. (2005). Brain and Visual Perception: The Story of a 25-Year Collaboration. Oxford University Press.
Hubel, D. H., & Wiesel, T. N. (1959). Receptive fields of single neurones in the cat’s striate cortex. J Physiol, 147, 226–238.
Article CAS PubMed PubMed Central Google Scholar
Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol, 160, 106–154.
Article CAS PubMed PubMed Central Google Scholar
Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey striate cortex. The Journal of Physiology, 195(1), 215–243.
Article CAS PubMed PubMed Central Google Scholar
Jansen, M., Jin, J., Li, X., Lashgari, R., Kremkow, J., Bereshpolova, Y., Swadlow, H. A., Zaidi, Q., & Alonso, J.-M. (2019). Cortical balance between ON and OFF visual responses is modulated by the spatial properties of the visual stimulus. Cerebral Cortex, 29(1), 336–355.
Johnson, E. N., Hawken, M. J., & Shapley, R. (2008). The orientation selectivity of color-responsive neurons in Macaque V1. The Journal of Neuroscience, 28(32), 8096–8106.
Article CAS PubMed PubMed Central Google Scholar
Jones, J., & Palmer, L. (1987). The two-dimensional spatial structure of simple receptive fields in cat striate cortex. Journal of Neurophysiology, 58, 1187–1211.
Article CAS PubMed Google Scholar
Jones, J., & Palmer, L. (1987). An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. Journal of Neurophysiology, 58, 1233–1258.
Article CAS PubMed Google Scholar
Jung, Y. J., Almasi, A., Sun, S. H., Yunzab, M., Cloherty, S. L., Bauquier, S. H., Renfree, M., Meffin, H., Ibbotson, M. R. (2022). Orientation pinwheels in primary visual cortex of a highly visual marsupial. Science Advances, 8 (39): eabn0954.
King, P. D., Zylberberg, J., & DeWeese, M. R. (2013). Inhibitory interneurons decorrelate excitatory cells to drive sparse code formation in a spiking model of V1. Journal of Neuroscience, 33(13), 5475–5485.
Comments (0)