Abbas, M., Jam, F. A., & Khan, T. I. (2024). Is it harmful or helpful? Examining the causes and consequences of generative AI usage among university students. International Journal of Educational Technology in Higher Education, 21(10), 1–22. https://doi.org/10.1186/s41239-024-00444-7
Alhaidry, H. M., Fatani, B., Alrayes, J. O., Almana, A. M., & Alfhaed, N. K. (2023). ChatGPT in dentistry: A comprehensive review. Cureus, 15(4), 1–8. https://doi.org/10.7759/cureus.38317
Alimoradi, Z., Broström, A., Potenza, M. N., Lin, C.-Y., & Pakpour, A. H. (2024). Associations between behavioral addictions and mental health concerns during the COVID-19 pandemic: A systematic review and meta-analysis. Current Addiction Reports, 11(3), 565–587. https://doi.org/10.1007/s40429-024-00555-1
Aljanabi, M., Ghazi, M., Ali, A. H., & Abed, S. A. (2023). ChatGpt: Open possibilities. Iraqi Journal for Computer Science and Mathematics, 4(1), 62–64. https://doi.org/10.52866/ijcsm.2023.01.01.0018
Almourad, M., McAlaney, J., Skinner, T., Pleya, M., & Ali, R. (2020). Defining digital addiction: Key features from the literature. Psihologija, 53(3), 237–253. https://doi.org/10.2298/psi191029017a
André, F., Broman, N., Håkansson, A., & Claesdotter-Knutsson, E. (2020). Gaming addiction, problematic gaming and engaged gaming – Prevalence and associated characteristics. Addictive Behaviors Reports, 12(100324), 1–7. https://doi.org/10.1016/j.abrep.2020.100324
Andreassen, C. S., Billieux, J., Griffiths, M. D., Kuss, D. J., Demetrovics, Z., Mazzoni, E., & Pallesen, S. (2016). The relationship between addictive use of social media and video games and symptoms of psychiatric disorders: A large-scale cross-sectional study. Psychology of Addictive Behaviors, 30(2), 252–262. https://doi.org/10.1037/adb0000160
Arıcak, O. T., Dinç, M., Yay, M., & Griffiths, M. D. (2018). İnternet Oyun Oynama Bozukluğu Ölçeği Kısa Formu’nun (İOOBÖ9-KF) Türkçeye uyarlanması: Geçerlik ve güvenirlik çalışması. Addicta: The Turkish Journal on Addictions, 6(1), 1–22.https://doi.org/10.15805/addicta.2018.5.4.0027
Augner, C., Vlasak, T., Aichhorn, W., & Barth, A. (2023). The association between problematic smartphone use and symptoms of anxiety and depression—a meta-analysis. Journal of Public Health, 45(1), 193–201. https://doi.org/10.1093/pubmed/fdab350
Bai, L., Liu, X., & Su, J. (2023). ChatGPT: The cognitive effects on learning and memory. Brain-X, 1(3), e30. https://doi.org/10.1002/brx2.30
Baker, F. B., & Kim, S. H. (2017). The basics of item response theory using R. Springer.
Barberis, N., Sanchez-Ruiz, M. J., Cannavò, M., Calaresi, D., & Verrastro, V. (2023). The dark triad and trait emotional intelligenceas predictors of problematic social media use and engagement: The mediating role of the fear of missing out. Clinical Neuropsychiatry, 20(2), 129–140. https://doi.org/10.36131/cnfioritieditore20230205
Article PubMed PubMed Central Google Scholar
Baumeister, R. F., & Vohs, K. D. (2007). Self-regulation, ego depletion, and motivation. Social and Personality Psychology Compass, 1(1), 115–128. https://doi.org/10.1111/j.1751-9004.2007.00001.x
Bellis, M., Sharp, C., Hughes, K., & Davies, A. (2021). Digital overuse and addictive traits and their relationship with mental well-being and socio-demographic factors: A national population survey for wales. Frontiers in Public Health, 16(9), 1–12. https://doi.org/10.3389/fpubh.2021.585715
Bhattacharya, P., Prasad, V. K., Verma, A., Gupta, D., Sapsomboon, A., Viriyasitavat, W., & Dhiman, G. (2024). Demystifying ChatGPT: An in-depth survey of OpenAI’s robust large language models. Archives of Computational Methods in Engineering, 1–44. https://doi.org/10.1007/s11831-024-10115-5
Bojić, L., Matthes, J., & Cabarkapa, M. (2024). Amplification of addictive new media features in the metaverse. arXiv. Retrieved November 10, 2024, from https://arxiv.org/pdf/2401.03461
Brown, T. A. (2015). Confirmatory factor analysis for applied research (2nd ed.). Guilford Publications.
Cambria, E. (2024). Natural language understanding spsampsps AI. In Understanding natural language understanding (pp. 1–39). Springer. https://doi.org/10.1007/978-3-031-73974-3_1
Chen, F. F. (2007). Sensitivity of goodness of fit indexes to lack of measurement invariance. Structural Equation Modeling: A Multidisciplinary Journal, 14(3), 464–504. https://doi.org/10.1080/10705510701301834
Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing measurement invariance. Structural Equation Modeling: A Multidisciplinary Journal, 9(2), 233–255. https://doi.org/10.1207/s15328007sem0902_5
Chou, C., & Hsiao, M. C. (2000). Internet addiction, usage, gratification, and pleasure experience: The taiwan college students’ case. Computers & Education, 35(1), 65–80. https://doi.org/10.1016/s0360-1315(00)00019-1
DeVellis, R. F. (2016). Scale development: Theory and applications (Vol. 26). Sage Publications.
Dresp-Langley, B., & Hutt, A. (2022). Digital addiction and sleep. International Journal of Environmental Research and Public Health, 19(11), 1–19. https://doi.org/10.3390/ijerph19116910
Dubey, S., Ghosh, R., Chatterjee, S., Dubey, M., Das, S., & León, J. (2024). Redefining cognitive domains in the era of ChatGPT: A comprehensive analysis of artificial intelligence’s influence and future implications. Medical Research Archives, 12(6), 1–10. https://doi.org/10.18103/mra.v12i6.5383
Duong, C. D., Vu, T. N., Ngo, T. V. N., Do, N. D., & Tran, N. M. (2024). Reduced student life satisfaction and academic performance: Unraveling the dark side of ChatGPT in the higher education context. International Journal of Human-Computer Interaction, 1, 1–16. https://doi.org/10.1080/10447318.2024.2356361
Dutta, D., & Mishra, S. K. (2024). “Technology is killing me!”: The moderating effect of organization home-work interface on the linkage between technostress and stress at work. Information Technology & People, 37(6), 2203–2222. https://doi.org/10.1108/itp-03-2022-0169
Feng, M., Xia, A., & Xia, X. (2023). The association between ChatGPT usage and college students’ online learning burnout: The mediating role of self-control. Twelfth International Conference of Educational Innovation through Technology (EITT), 2023, 209–212. https://doi.org/10.1109/eitt61659.2023.00046
Fraley, R. C., Waller, N. G., & Brennan, K. A. (2000). An item response theory analysis of self-report measures of adult attachment. Journal of Personality and Social Psychology, 78(2), 350–365. https://doi.org/10.1037/0022-3514.78.2.350
Article CAS PubMed Google Scholar
Franze, A., Galanis, C. R., & King, D. L. (2023). Social chatbot use (e.g., ChatGPT) among individuals with social deficits: Risks and opportunities. Journal of Behavioral Addictions, 12(4), 871–872. https://doi.org/10.1556/2006.2023.00057
Article PubMed PubMed Central Google Scholar
Gammoh, L. A. (2024). ChatGPT in academia: Exploring university students’ risks, misuses, and challenges in Jordan. Journal of Further and Higher Education, 48(6), 608–624. https://doi.org/10.1080/0309877x.2024.2378298
Gugushvili, N., Täht, K., Schruff-Lim, E. M., Ruiter, R. A., & Verduyn, P. (2024). The association between neuroticism and problematic social networking sites use: The role of fear of missing out and self-control. Psychological Reports, 127(4), 1727–1750. https://doi.org/10.1177/00332941221142003
Gültekin, M., & Şahin, M. (2024). The use of artificial intelligence in mental health services in Turkey: What do mental health professionals think? Cyberpsychology: Journal of Psychosocial Research on Cyberspace, 18(1), Article 6. https://doi.org/10.5817/CP2024-1-6
Hans, A., Singh, N. T., Kumar, R., Kumar, A., Choubey, A., & Suresh. (2024). The psychology behind addictive applications in technology. 2024 IEEE International Conference on Computing, Power and Communication Technologies (IC2PCT) (pp. 669–672). https://doi.org/10.1109/ic2pct60090.2024.10486603
Harwell, M., Stone, C. A., Hsu, T.-C., & Kirisci, L. (1996). Monte Carlo studies in item response theory. Applied Psychological Measurement, 20(2), 101–125. https://doi.org/10.1177/014662169602000201
Hayes, A. F. (2018). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach (2nd ed.). The Guilford Press.
Hosseini, M., Gao, C. A., Liebovitz, D. M., Carvalho, A. M., Ahmad, F. S., Luo, Y., MacDonald, N., Holmes, K. L., & Kho, A. (2023). An exploratory survey about using ChatGPT in education, healthcare, and research. PLoS ONE, 18(10), 1–14. https://doi.org/10.1371/journal.pone.0292216
Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55. https://doi.org/10.1080/10705519909540118
Huang, Y., & Huang, H. (2024). Exploring the effect of attachment on technology addiction to generative AI chatbots: A structural equation modeling analysis. International Journal of Human–Computer Interaction, 1–10. https://doi.org/10.1080/10447318.2024.2426029
Karakose, T., Yıldırım, B., Tülübaş, T., & Kardas, A. (2023). A comprehensive review on emerging trends in the dynamic evolution of digital addiction and depression. Frontiers in Psychology, 14(1126815), 1–24. https://doi.org/10.3389/fpsyg.2023.1126815
Kayiş, A. R., Satici, S. A., Yilmaz, M. F., Şimşek, D., Ceyhan, E., & Bakioğlu, F. (2016). Big five-personality trait and internet addiction: A meta-analytic review. Computers in Human Behavior, 63, 35–40. https://doi.org/10.1016/j.chb.2016.05.012
Kesici, A. (2020). The effect of conscientiousness and gender on digital game addiction in high schoolstudents. Journal of Education and Future, 18, 43–53. https://doi.org/10.30786/jef.543339
Comments (0)