Hoffman JIE, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002;39:1890-900. DOI: https://doi.org/10.1016/s0735-1097(02)01886-7
Taggart DP, Hadjinikolas L, Wong K, Yap J, Hooper J, Kemp M, et al. Vulnerability of paediatric myocardium to cardiac surgery. Heart. 1996;76:214–7. DOI: https://doi.org/10.1136/hrt.76.3.214
Ihnken K, Morita K, Buckberg GD, Sherman MP, Young HH. Studies of hypoxemic/reoxygenation injury: without aortic clamping. III. Comparison of the magnitude of damage by hypoxemia/reoxygenation versus ischemia/reperfusion. J Thorac Cardiovasc Surg. 1995;110:1182–9. DOI: https://doi.org/10.1016/s0022-5223(95)70004-8
Del Rio D, Stewart A, Pellegrini N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis. 2005;15:316-28. DOI: https://doi.org/10.1016/j.numecd.2005.05.003
Kocak E, Kocak C, Aksoy A, Isiklar OO, Akcilar R, Ozdomanic IF, et al. High-sensitivity cardiac troponin T is more helpful in detecting peri-operative myocardial injury and apoptosis during coronary artery bypass graft surgery. Cardiovasc J Afr. 2015;26:234-41. DOI: https://doi.org/10.5830/CVJA-2015-052
Fishbein MC, Wang T, Matijasevic M, Hong L, Apple FS. Myocardial tissue troponins T and I: an immunohistochemical study in experimental models of myocardial ischemia. Cardiovasc Pathol. 2003;12:65-71. DOI: https://doi.org/10.1016/S1054-8807(02)00188-6
Ates A, Erkut B. The effect of cross clamp time on Troponin I levels in patients undergoing coronary artery bypass grafting. East African Scholars J Med Sci. 2019;2:175–9. DOI: https://doi.org/10.36349/easms.2019.v02i03.025
Etievent JP, Chocron S, Toubin G, Taberlet C, Alwan K, Clement F, et al. Use of cardiac troponin I as a marker of perioperative myocardial ischemia. Ann Thorac Surg. 1995;59:1192–4. DOI: https://doi.org/10.1016/0003-4975(95)00129-9
Taggart DP, Hadjinikolas L, Wong K, Yap J, Hooper J, Kemp M, et al. Vulnerability of paediatric myocardium to cardiac surgery. Heart. 1996;76:214–7. DOI: https://doi.org/10.1136/hrt.76.3.214
Mahmood SR, Arif A, Jabeen S, Hafeez H, Ihsan AR, Yunus A. Effect of shorter cross clamp time vs. longer cross clamp time on cardiac enzyme levels in PTS of CAD undergoing CABG. Pakistan J Med Health Sci. 2023;17:159–62. DOI: https://doi.org/10.53350/pjmhs2023174159
Del Rio D, Stewart AJ, Pellegrini N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis. 2005;15:316–28. DOI: https://doi.org/10.1016/j.numecd.2005.05.003
Faymonville ME, Pincemail J, Duchateau J, Paulus JM, Adam A, Deby-Dupont G, et al. Myeloperoxidase and elastase as markers of leukocyte activation during cardiopulmonary bypass in humans. J of Thor Cardiovasc Sur. 1991;102:309–17. DOI: https://doi.org/10.1016/s0022-5223(19)36564-x
Lazzarino G, Raatikainen P, Nuutinen M, Nissinen J, Tavazzi B, Di Pierro D, et al. Myocardial release of Malondialdehyde and purine compounds during coronary bypass surgery. Circulation. 1994;90:291–7. DOI: https://doi.org/10.1161/01.cir.90.1.291
Jabbari A, Banihashem N, Alijanpour E, Vafaey HR, Alereza H, Rabiee SM. Serum lactate as a prognostic factor in coronary artery bypass graft operation by on pump method. Caspian J Int Med. 2013;4:662–6. PMID: 24009956.
Şahutoğlu C, Yaşar A, Kocabaş S, Aşkar FZ, Ayık MF, Atay Y. Correlation between serum lactate levels and outcome in pediatric patients undergoing congenital heart surgery. Turk Gogus Kalp Damar Cerrahisi Derg. 2018;26:375–85.DOI: https://doi.org/10.5606/tgkdc.dergisi.2018.15791
Al-Sarraf N, Thalib L, Hughes A, Houlihan M, Tolan M, Young V, et al. Cross-clamp time is an independent predictor of mortality and morbidity in low- and high-risk cardiac patients. Int JSurg. 2011;9:104–9. DOI: https://doi.org/10.1016/j.ijsu.2010.10.007
Moh'd AF, Al-Odwan HT, Altarabsheh S, Makahleh ZM, Khasawneh MA. Predictors of aortic clamp time duration and intensive care unit length of stay in elective adult cardiac surgery. Egypt Heart J. 2021;7:92. DOI: https://doi.org/10.1186/s43044-021-00195-0
de Castro Martínez J, Vázquez Rizaldos S, Velayos Amo C, Herranz Valera J, Almería Varela C, Iloro Mora MI. Troponina I cardíaca en el infarto de miocardio perioperatorio tras cirugía de revascularización coronaria [Cardiac troponin I in perioperative myocardial infarction after coronary artery bypass surgery]. Rev Esp Cardiol. 2002;55:245-50. Spanish. DOI: https://doi.org/10.1016/s0300-8932(02)76592-5
Djordjević A, Kotnik P, Horvat D, Knez Ž, Antonič M. Pharmacodynamics of Malondialdehyde as indirect oxidative stress marker after arrested-heart cardiopulmonary bypass surgery. BiomedPharmacother. 2020;132:110877. DOI: https://doi.org/10.1016/j.biopha.2020.110877
Seghrouchni A, Atmani N, Moutakiallah Y, Belmekki A, El Bekkali Y, Houssa MA. Does severe hyperlactatemia during cardiopulmonary bypass predict a worse outcome? Ann MedSurg. 2021;73:103198. DOI: https://doi.org/10.1016/j.amsu.2021.103198
Yang HH, Chang JC, Jhan JY, Cheng YT, Huang YT, Chang BS, , et al. Prognostic value of peak lactate during cardiopulmonary bypass in adult cardiac surgeries: A retrospective cohort study. Tzu Chi Med J. 2020;32:386–91. DOI: https://doi.org/10.4103/tcmj.tcmj_215_19
Nadeem R, Agarwal S, Jawed S, Yasser A, Altahmody K. Impact of cardiopulmonary bypass time on postoperative duration of mechanical ventilation in patients undergoing cardiovascular surgeries: a systemic review and regression of metadata. Cureus. 2019;11:e6088. DOI: https://doi.org/10.7759/cureus.6088
Madhavan S, Chan SP, Tan WC, Eng J, Li B, Luo H-D, et al. Cardiopulmonary bypass time: Every minute counts. Journal of Cardiovasc Surg. 2018;59:274-81. DOI: https://doi.org/10.23736/s0021-9509.17.09864-0
Zhang X, Zhang W, Lou H, Luo C, Du Q, Meng Y, et al. Risk factors for prolonged intensive care unit stays in patients after cardiac surgery with cardiopulmonary bypass: A retrospective observational study. Int J Nurs Sci. 2021;8:388–93. DOI: https://doi.org/10.1016/j.ijnss.2021.09.002
Comments (0)